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Abstract. Efficient complementation of nondeterministic Büchi automata is es-
sential for the automata-theoretic approach to program verification. This work
presents an empirical comparison between explicit and symbolic implementa-
tions of the Kupferman-Vardi complementation construction. In order to compare
the two approaches, we study automaton universality, a special case of the model
checking problem. A novel encoding presented here allows the problem to be
solved symbolically via a standard model checker. We compare the performance
of an explicit-search(SPIN) and asymbolic-search(SMV) model checkers on
randomly generated automata. We compare these results withthe performance of
an explicit-encoding explicit-searchcomplementation tool (Wring) on the same
set of automata. Our main finding is that a purely symbolic approach significantly
outperforms the two other approaches.

1 Introduction

The automata-theoretic approach to program verification allows questions about the
correctness of a program with respect to its specifications to be reduced to questions
about language containment [29]. To check that the languageof an automatonAP is
contained in the language ofAS , we check whether the intersection ofAP with the
complement ofAS is empty. In the automata-theoretic framework the automaton AP

usually is an abstraction of the program andAS represents the property that we want to
verify. Thus, complementation of nondeterministic finite automata is a key problem of
model checking.

If the property is given in terms of a formulaϕ in a temporal logic we can avoid
the complementation step by first negating the formula and then constructing the cor-
responding automatonA¬ϕ [29]. If, however, the property is given as an automaton
AS , constructing the complementary automatonAS can be computationally demand-
ing. Automata on finite words are not powerful enough to represent liveness and fairness
properties of non-terminating programs. The framework of finite automata on infinite
words provides the expressive power that we need, but we haveto pay for it in terms of
more expensive operations.

Automata on infinite words are usually classified according to theiracceptance con-
dition. Several acceptance conditions–for example, Büchi, Muller, Rabin, Streett, and
parity–have been proposed and studied extensively [11]. Here we considerBüchi au-
tomata, where a subset of the states are designated as accepting states, and an infinite
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word is accepted if and only if there is a run that visits some of the accepting states
infinitely often [3]. Büchi automata can be further classified according to their transi-
tion relations. In adeterministicautomaton each state has a unique successor for each
input letter. Innondeterministicautomata a state may have multiple successors on the
same input letter. Deterministic Büchi automata are strictly less expressive than nonde-
terministic Büchi automata [20], that is, there is a language over infinite words which is
recognized by a nondeterministic Büchi automaton but cannot be recognized by any de-
terministic automaton. Nondeterministic Büchi automataare more natural for express-
ing properties of programs, but complementing those automata is more expensive. Since
Büchi’s original construction [3] the field has witnessed tremendous development [10,
16, 18, 21, 23].

Experimental research on Büchi complementation has been lagging behind theo-
retical research, which may explain why an automata-theoretic model checker such as
COSPAN allows only deterministic automata to be used to specify properties [14, 19].
Tasiran et al. [28] and Althoff et al. [1] described implementations of Safra’s deter-
minization construction [23], which is the basic step for Safra’s complementation. Both
of these implementations had to deal with the highly involved data structures present in
Safra’s construction. Gurumurthy et al. [13] combined the Kupferman-Vardi construc-
tion [18] with several new minimization techniques and implemented it as an extension
of the Wring tool [12]. Wring maintains the state space explicitly, and performs the
complementation and minimization steps explicitly. Its performance on automata ob-
tained from linear temporal formulas is quite good [13]. However, [13] focuses just on
complementation and does not study the underlying model checking problem, nor does
it evaluate performance on general Büchi automata.

There have been some attempts at a symbolic implementation in the past. Tasiran’s
implementation [28] uses BDDs to encode the labeled orderedtrees of Safra’s con-
struction, but, as noted by the authors, the involved data structures prevents a fully sym-
bolic implementation of the transition function. On the other hand, the simplicity of
Kupferman-Vardi’s construction lends itself quite naturally to a fully symbolic imple-
mentation and in this paper we present two symbolic implementations of that construc-
tion. We study complementation by looking at model checkingBüchi specifications.
We consider a simplified setting where the program automatongenerates all infinite
traces, and the model checking problem is then equivalent tochecking ifAS is empty,
or, equivalently, to checking ifAS is universal. This work provides the first systematic
experimental evaluation of Büchi universality in the context of model checking.

Our contribution is three-fold. First, we present experimental results about the uni-
versality of nondeterministic Büchi automata generated according to the random model
of [26, 31]. Under this model we vary the “hardness” of the problem by controlling the
density of transitions (i.e., the ratio of transition per input letter to total states) and the
density of accepting states (i.e. the ratio of accepting states to total states). We show
empirically that this model does yield an interesting problem space. The probability
of universality increases from 0 to 1 with the transition density and (less pronounced)
with the accepting state density. We also use the random model to study the size of
the complementary automaton (the tool Wring generates the complementary automa-
ton explicitly), and show that the complementary automatonincreases in size with both
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transition density and accepting state density. These results confirm that this random
model does provide an interesting source of benchmark problems.

Our second contribution is a direct experimental comparison between Wring and
two symbolic implementations of the Kupferman-Vardi construction. To solve univer-
sality symbolically we observe that the complementary automaton can be viewed as a
nondeterministic synchronous sequential circuit with fairness constraints. Checking for
emptiness is equivalent to checking for the presence of a path that visits an accepting
state infinitely often (alasso). This can be expressed as a temporal property of the cir-
cuit, which allows us to express the universality problem asa model checking problem
and solve it symbolically via a model checker. We used Cadence SMV1 and SPIN [15].
The two model checkers present two fundamentally differentways of solving the prob-
lem. Both allow asymbolicencoding of the state space and the transition relation, but
Cadence SMV searches for a lassosymbolically[5], while SPIN searchesexplicitly
[7]. In contrast, Wring maintains the state space and generates the complementary au-
tomatonexplicitly, which is then searched for a lasso using SPIN. Comparing thethree
approaches can give us insight into whether symbolic or explicit algorithms for Büchi
complementation have better performance “in practice”. Our results show that the fully
symbolic approach significantly outperforms the other two.In fact, explicit construction
of the complementary automaton is a challenge even for the automata with six states.

Our third contribution focuses on the key idea in the Kupferman-Vardi construction–
using rankedsubsets as the states of the complementary automata, where rank is an
integer that measure “progress” toward fair termination [16]. An obvious optimization
heuristic is to bound the maximum rank used in the construction. We report on empirical
experiments that indicate that when attempting to establish nonuniversality, a small
maximum rank is typically sufficient.

2 Preliminaries

In this section we introduce the notation used throughout this paper and review the rele-
vant details of [18]. A(nondeterministic) B̈uchi automatonis a tupleA = 〈Σ, Q, qin, ρ, α〉,
whereΣ is a finite nonempty alphabet,Q is a finite nonempty set of states,qin ∈ Q

is the initial state,α ⊆ Q is the set of accepting states, andρ ⊆ Q × Σ → 2Q is a
transition relation. A run isacceptingiff it visits α infinitely often. A wordw ∈ Σω

is accepted byA if A has an accepting run onw. The words accepted byA form the
language ofA, denoted byL(A).

A level rankingfor A is a functiong : Q → {0 . . .2n} ∪ {⊥} such that ifg(q)
is odd, thenq 6∈ α. Let G be the set of all level rankings. For two level rankingsg

andg′, we say thatg coversg′ if for all q andq′, if g(q) 6= ⊥ andq′ ∈ δ(q, σ), then
0 ≤ g′(q′) ≤ g(q) (note that wheng(q) = ⊥ the ranking ofq′ is left unspecified). We
say thatg minimally coversg′ if g coversg′ and wheneverg′(q′) 6= ⊥, then there exists
q such thatq′ ∈ δ(q, σ) andg(q) 6= ⊥.

LetB = 〈Σ, Q, qin, δ, α〉 be a Büchi automaton. DefineN = 〈Σ,G×2Q, q′in, δ′,G×
{∅}〉, where

1 http://www.cadence.com/company/cadence labs research.html
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– q′in = 〈gin, ∅〉 wheregin is a level ranking that satisfiesgin(qin) = 2n and
gin(q) = ⊥ for all q 6= qin.

– For a state〈g, P 〉 ∈ G × 2Q and a letterσ ∈ Σ, we defineδ′(〈g, P 〉, σ) as follows:
• If P 6= ∅, thenδ′(〈g, P 〉, σ) = {〈g′, P ′〉 : g minimally coversg′, and

P ′ = {q′ : there isq ∈ P such thatq′ ∈ δ(q, σ) andg′(q′) is even}}.
• If P = ∅, thenδ(〈g, P 〉, σ) = {〈g′, P ′〉 : g minimally coversg′ and

P ′ = {g′ : g′(q′) is even}}.

Theorem 1 (KV01).LetB andN be defined as above. ThenL(N) = Σω\L(B).

Intuitively, this construction is an extension of the classical subset construction for
NFAs. The classical construction keeps track of subsets; here each state in the subset
has an associated rank. The transitions are defined such thatthe ranks of the states
along infinite paths are non-increasing. In addition, no state is allowed to get stuck at
an even rank. To check for this we have another subset construction that keeps track of
states that “owe” a pass through an odd rank (P ). The acceptance condition states that
infinitely often all states fulfill this obligation (P = ∅).

Recall that using the automata-theoretic approach a program P is abstracted to an
automatonAP ; we want to check if it is a model of a propertyϕ, which is represented
by an automatonAS . This is equivalent to deciding the language inclusion problem
L(AP ) ⊆ L(AS) which is solved by checkingL(AP )∩L(AS) = ∅. The product of the
two automata has sizeO(|AP | · |AS |) [6], and checking for emptiness is NLOGSPACE-
complete [30]; both operations are relatively inexpensivecompared to the complexity
of complementingAS . Thus, we propose to investigate the complementation part of the
problem by considering a simplified setting. We setAP to be the universal automaton,
that is,L(AP ) = Σω. The model checking problem is then reduced to checking ifAS

is empty, or, equivalently, whetherAS is universal. (The analogous problem for NFAs,
nondeterministic automata on finite words, has received some attention recently [26,
31].

3 Experimental Setup

Random Model: In the absence of a realistic benchmark suite, we use randomly gen-
erated automata. The random model described in [26, 31] provides a framework for
experimental evaluation of automata-theoretic algorithms. Here we provide a brief de-
scription; for more details see [26]. LetA = 〈Σ, Q, qin, ρ, α〉 be a Büchi automaton. In
our model the alphabetΣ is the set{0, 1}. For each letterσ ∈ Σ we generate a random
directed graphDσ on S with k edges, corresponding to transitionsρ(q, σ). Hereafter
we refer to the ratior = k

|Q| as thetransition density forσ (intuitively, r represents
the expected outdegree of each node forσ). We impose one exception for the initial
state: when building the random graphs we make sure that the initial node has an out-
going transition for each letter of the alphabet, which helps us avoid trivial cases of
non-universality. In this model the transition density ofD0 andD1 is the same, and we
refer to it as the transition density ofA. The number of accepting statesm is also a
linear function of the total number of states, and it is givenby anacceptance density
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f = m
|S| . The accepting states themselves are selected randomly. The idea of using a

linear density of some structural parameter to induce different behaviors has been quite
popular lately, most notably in the context of random 3-SAT [24].

Wring: Wring [12, 25] is a tool written in Perl. Gurumurthy et al. [13] combined
the Kupferman-Vardi complementation algorithm with several new minimization tech-
niques and implemented it as an extension of Wring. Wring is a“fully explicit” tool:
during complementation it maintains explicitly the set of ranked states and produces the
complementary automaton explicitly. Several simulation-based minimization steps are
applied at various stages of the construction, thus reducing the size of the intermediate
automata2.

While Wring produces the complementary automaton, it cannot check it for univer-
sality. For that purpose we encode the complementary automaton as a Promela model
and use SPIN [15] to search for an accepting cycle. Due to the minimization steps, the
automata that Wring produces are much smaller than the theoretical worst-case size.
This leads to relatively small Promela models, which are model checked much faster
than the time it takes to compute the complementary automaton. The times reported in
our experimental results include the time spent by Wring in the complementation step,
and by SPIN while it searches for an accepting cycle. Hereafter we useWring to refer to
the sequence of complementing an automaton using Wring and subsequently searching
for a lasso using SPIN.

SPIN: SPIN [15] is an explicit-state model checker implemented inC. SPIN allows
the specification of concurrent systems using a high-level language (Promela). The
state-space and the transition relation can be encoded symbolically, but the state of the
system is maintained explicitly. SPIN works on-the-fly, without constructing the full
state-space a priori.

Cadence SMV:Cadence SMV [22] is a symbolic model checker implemented inC. Ca-
dence SMV is based onbinary decision diagrams(BDDs) [2], which provide a canon-
ical representation for Boolean functions. BDDs are often substantially more compact
than explicit representations, and have been used successfully in the verification of cir-
cuits [5].

4 Symbolic Construction

Encoding using Cadence SMV:In contrast to a recent paper by Finkbeiner [9] which
describes an algorithm for language containment for Büchiautomata that requires an
extension to BDDs (namely,nondeterministic BDDs), here we present a construction
that uses standard BDDs.

Let |Q| = n. In Cadence SMV we use two vectors,rank andsubset, each of
sizen, such that a state(g, P ) is represented by (rank, subset). The elements of
subset are bits, and the elements ofrank are the numbers from 0 to2n + 1. The
value2n + 1 represents the element⊥ from the complementation construction, and the
numbers0 . . . 2n represent the ranks.

2 Two of these minimization steps, DirectSimulationMinimization() and PruneHeight(), led to
incorrect answers for some automata and had to be disabled.
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The initial state of the complementary automatonA is a ranking that assigns rank
2n to qin and⊥ to all other states. Likewise, initially the obligation subset is empty, thus
subset is initialized to all zeros. The transition letter is chosennondeterministically
(undefined variables can take any values from their domain).

To encode the transitions we use thenext operator. The powerful set-constructing
primitives in Cadence SMV allow us to encode very succinctlythe condition that ranks
are non-increasing. Finally, we assertfalseand require, using a fairness condition in the
model, the obligation to be fulfilled infinitely often. In an empty model the specification
holds, otherwise Cadence SMV returns a counterexample, indicating that a fair cycle
has been found.

Encoding using SPIN:Encoding of the complementary automaton in Promela is based
on the same ideas as the encoding in Cadence SMV. However, Promela is less expressive
than Cadence SMV, making the encoding somewhat more cumbersome.

Unlike Cadence SMV, Promela does not provide anext operator, so here we have
to maintain explicitly a vector of ranks for the current state and the next state, and
likewise for the current obligation set and the next obligation set. At the beginning of
each iteration a transition letter is chosen nondeterministically. For each state we select
the lowest rank of its predecessors and use it to enforce thatranks are non-increasing
(Appendix B). We label the location in the model where the obligation is fulfilled with
accept, and ask SPIN to search for fair cycles.

Optimizations: A straightforward BDD-based implementation usually needsto be fine-
tuned to get the best possible performance. In this section we describe optimizations that
we applied to the symbolic implementation.

Fussy vs. Sloppy encoding.The Kupferman-Vardi construction can be relaxed in the
following way:

– If P 6= ∅, thenδ′(〈g, P 〉, σ) = {〈g′, P ′〉 : g coversg′, and
P ′ ⊇ {q′ : there isq ∈ P such thatq′ ∈ δ(q, σ) andg′(q′) is even}}.

– If P = ∅, thenδ(〈g, P 〉, σ) = {〈g′, P ′〉 : g coversg′ and
P ′ ⊇ {g′ : g′(q′) is even}}.

We refer to the original encoding asfussy, and to the new assloppy. It is easy to see
why this modification does not change the universality of theautomaton. Intuitively,
adding more states toP ′ means that more states “owe” a visit to an odd rank. Similarly,
in the sloppy encoding we modify the level ranking to allow states to take on an arbitrary
rank instead of being assigned rank⊥. Notice that this optimization actually represents
three different optimizations: sloppy encoding of the ranking function alone, of the
obligation set alone, or both. In all three cases we are increasing the number of possible
runs, but the corresponding BDDs encoding the transitions may be simpler.

Monolithic vs. Conjunctive partitioning.In [4], Burch, Clarke and Long suggest an
optimization of the representation of the transition relation of a sequential circuit. They
note that the transition relation is the conjunction of several small relations, and the
size of the BDD representing the entire transition relationmay grow as the product of
the sizes of the individual parts. This encoding is calledmonolithic. The method that
Burchet al.suggest represents the transition relation by a list of constraints, which are
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implicitly conjoined. Burchet al. call their methodconjunctive partitioning, which is
the default encoding in Cadence SMV.

Jumping vs. Crawling.Another optimization, suggested in [18], affects how the
ranks are reduced. In the original definition of level ranking, a successor state can be
assigned any rank that is no larger than its predecessors’. We refer to this asjumping.
We can restrict the level ranking such that instead of a transition to any rank smaller
thani, a transition is enabled only to ranksi, i− 1 andi− 2 (crawling). This restriction
does not change the language of the automaton (we can simulate one big decrease via
several small ones), but it does reduce the number of possible transitions, thus it may
lead to simpler BDDs.

BDD variable ordering.When using BDDs, it is crucial to select a good order of
the variables. Finding an optimal order is itself a hard problem, so one has to resort to
different heuristics. The default order in Cadence SMV is based on an internal heuristic.
The orders that we considered included the default order, and the order given by three
heuristics that are studied with respect to tree decompositions: Maximum Cardinality
Search [27] (MCS), LEXP and LEXM [17]. In our experiments MCSproved to be better
than LEXP and LEXM, so we will only report the results for MCS and the default order.

Forward and Backward State Traversal.Traversal of the state space can be done
in two ways: we can start from the initial state and search fora strongly connected
component that contains an accepting state, or start from the set of accepting states and
traverse the graph backward, searching for subset that can reach itself. The advantage
of forward traversalis that we only explore the reachable state space. On the other
hand,backward traversalallows us to focus on the “relevant” subset of the state space.
Cadence SMV allows both traversal methods to be used.

Incremental Approach.The complementation construction initially assigns rank
2|Q| to the initial state of the complementary automatonN and⊥ to every other state.
However, if the source automatonB is non-universal, we might be able to find an ac-
cepting cycle starting with a lower initial ranking. LetNi be the complementary au-
tomaton where the initial ranking assigns ranki to the initial state; the original con-
struction then corresponds toN2|Q|. The sequence of automataN0, N1, . . . , N2|Q|−1

under-approximatesN in the sense that only a subset of the state space is explored.
Consequentially,L(N0) ⊆ L(N1) ⊆ . . . ⊆ N2|Q|−1 ⊆ N2|Q|. If we are able to find an
accepting cycle inNi then the same cycle will be present inN2|Q| and both automata
will accept the same word. The advantage is that the state space ofNi is much smaller
than that ofN2|Q| for small i’s. We studied the minimal rank required to prove non-
universality. This naturally leads to a non-universality heuristic: check non-universality
with a small rank, and if no accepting cycle is found, use the full construction.

5 Experimental Results

We fine tuned the performance of the symbolic approach by considering various com-
binations of the optimizations described in Section 4. The effect of some optimizations
was independent of the rest, while others led to worse performance when used in certain
combinations. We were able to achieve the best performance using conjunctive parti-
tioning, fussy encoding of the ranking function’s transitions and sloppy encoding of the
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transitions of the obligation set, jumping rank reduction,and backward traversal. The
results below refer to this configuration.

In Figure 1(a)3 we present the probability of universality as a function of transition
densityr and accepting state densityf . To generate each data point we checked the
universality of 100 automata with|Q| = 6. The behavior that we see is not surprising.
Increasing the transition density allows for more transitions between the states and more
runs. Likewise, increasing the density of accepting statesmeans that more runs are
accepting.
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Fig. 1. The random model

Next we turn to the size of the complementary automaton. Unlike NFAs, Büchi
automata do not have a canonical normal form. Here we consider the complementary
automata generated byWring (Recall thatWring applies simulation minimization to
the intermediate automata). Figure 1(b) presents the results for automata with|Q| = 4.
Each data point represents the median size of 100 automata. The first discovery is that
the median size of the complementary automaton is much smaller than the theoretical
worst-case size (331,776 states). We observe that the size is biggest for small transition
densities and zero for large transition densities. This behavior is quite intuitive; increas-
ing the number of transitions means that more automata are universal, or, equivalently,
that their complement is empty.Wring is very effective at minimizing the size of the in-
termediate automata and as a result, the complementary automata it produces are very
small.

Landscape.In order to compare the performance of the three approaches we first use
them to complement automata with a fixed size. All experiments were performed on the
Rice Terascale Cluster (http://rcsg.rice.edu/rtc/), which is a large Linux
cluster of Itanium II processors with 4 GB of memory each. Foreach datapoint we
generated 100 random automata, checked universality usingeach of the methods, and
then took the median. The comparison was done on random automata with|Q| = 6.

We first report our results for the fully explicit approach (based onWring). Recall
that this approach has two phases: complementing the automaton explicitly using Wring

3 We recommend viewing the figures online in color (http://www.cs.rice.edu/ vardi/papers/).
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and then searching for an accepting cycle using SPIN. Our first discovery is that the
fully explicit method is unable to handle automata of that size across the whole density
landscape. This is most likely due toWring being written in Perl. On Figure 2(a) we
show the percentage of timeouts during the complementationphase as a function ofr
andf (the timeout period here is 3600 seconds per automaton). Thehardest problems
for the fully explicit method lie in the region with low acceptance density, where the
timeout range is between 60% and 100%. Everywhere else in thelandscape the timeout
rate is low. Our observation is that the tool either returns the complementary automaton
within several hundred seconds, or times out. In all cases when Wring successfully
complemented the automaton, searching for an accepting cycle took under a second.
The optimizations that Wring applies to the intermediate automata lead to a very small
complementary automaton, thus simplifying the job of the model checker.
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Fig. 2. Fully explicit approach

In order to gain some insight into the time taken by the fully explicit method we
made the problem simpler. Instead of using 6-state automatawe used 4-state automata.
Figure 2(b) presents the results. The data confirms the earlier observation that the hard
problems are at low acceptance densities, however, not all of them are equally hard.
Around r = 1.5 we observe a peak and forr > 1.5 the time taken is two orders of
magnitude higher than for low transition densities (r < 1, 5).

We next investigate the performance of the semi-symbolic (i.e. symbolic-encoding,
explicit-search) approach usingSPIN. As in the case for the fully explicit approach, we
observe that the semi-symbolic approach times is unable to handle automata of size 6
(Figure 3(a)). We observed timeout rates of 60%-100% forr > 1.0 (the timeout period
here is again 3600 seconds per automaton). However, if we consider automata of size
4 (Figure 3(b)) we see that the semi-symbolic approach outperforms the fully explicit
approach by two and three orders of magnitude. In comparisonwith Figure 2(b), the
peak of the graph is shifted fromr = 1.5 to r = 2.5 and is less pronounced.

The data suggest that neither the fully explicit nor the semi-symbolic approach will
scale for automata with more than a few states. On one hand, the fully explicit approach
is very successful at minimizing the size of the intermediate automata, but the cost of the
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Fig. 3. Semi-symbolic approach

optimizations is prohibitive when the state space is large.On the other hand, searching
the full state space explicitly with the semi-symbolic approach is quite effective for
small automata but infeasible when the state space increases.

Figure 4 presents the results for the fully symbolic approach usingCadence SMV.
The immediate observation is that using the fully symbolic approach we are able to
check universality for all automata with size 6 in the landscape. The hardest problems
for this approach are again at low acceptance densities, with a peak atr = 2.0. For
low transition densities (r < 1.0) the performance of the fully symbolic approach is
worse by an order of magnitude than the semi-symbolic approach, but unlike the semi-
symbolic approach, the fully symbolic one is able to handle automata with high (r >

1.0) transition densities.
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Fig. 4. Universality checking with fully symbolic approach (automaton size 6)

Our conclusion from this set of experiments is that the fullysymbolic approach
dominates the other two for automata with a fixed size. Next westudy the scaling of the
three approaches.
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Scaling. A key idea from complexity theory is that performance comparison should
focus on scalability, that is, how running time scales with input size. This allows us to
abstract away constant factors. The key idea is that we are interested in the approach
that allows us to solve the largest problems.

The results of our experiments on fixed-size automata suggest that in order to get
some meaningful results we need to consider a point on the landscape where all ap-
proaches can return before the timeout period. We selected(r, f) = (1.0, 0.5) and
considered automata sizes between 4 and 10 in increments of 2. The data are presented
on Figure 5(a). Here we see that even though the semi-symbolic approach performs the
best for small automata, this does not translate into betterscaling. Indeed, of all three
approaches the one that scales the best is the fully symbolic, and only this approach is
able to solve problems with size 10.

As pointed out before, the hardness of the problems is not uniform but rather
changes as we vary the transition density. This is confirmed by our last set of exper-
iments. In Figure 5(b) we present the scaling of universality checking with the fully
symbolic method at different transition densities. As expected, the “hard” problems
aroundr = 2.0 lead to the worst scaling, while problems withr = 3.0 andr = 1.0 are
easier to solve even for big automata.
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Fig. 5. Scaling comparison

Incremental Heuristic. The last optimization described earlier (building the comple-
mentary automaton incrementally) suggests an interestingheuristic. Clearly, if the au-
tomaton is universal we will not be able to discover an accepting cycle no matter what
initial ranking we choose. However, we discovered that whenthe starting automaton
is non-universal, choosing a small initial ranking returnsthe result sooner, while still
discovering an accepting cycle. We discovered empiricallythat automata with higher
transition density require higher initial ranks (see Table1). This behavior is expected:
the higher the number of transitions, the harder it is to convince one that the automa-
ton is not universal. In all cases, however, we were able to discover an accepting cycle
(when one exists) using initial ranking 3 or smaller (we considered automata with sizes
6 and 8, where the original algorithm would require initial rankings of 12 and 16 ac-
cordingly). Thus, we propose the following heuristic: given an automaton, first try to
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discover a cycle in the complementary automaton while usingan initial ranking 3. In
this case the state-space is significantly smaller than the state-space for the original al-
gorithm, thus allowing us to get a result sooner. If we are unsuccessful we can then run
the algorithm with initial ranking2|Q|. To test our heuristic we checked universality
of automata with size 10. Using initial ranking 3 returned the correct result in 100%
of the cases, and the time savings were significant. The heuristic sped up the perfor-
mance by two orders of magnitude for the hardest problems (r = 2.0) and twice as fast
for the easiest problems (atr = 0.5). (It is known that initial rank2n is required in
general [13].)

|Q| = 6 |Q| = 8

Transition densityrank 0rank 1rank 2rank 3 rank 0rank 1rank 2rank 3
r = 1.0 92 7 1 0 90 10 0 0
r = 2.0 68 32 0 0 56 36 7 1
r = 3.0 9 90 1 0 17 83 0 0

Table 1. Number of automata (out of 100 nonuniversal automata) for which an accepting cycle
was discovered with the indicated initial ranking and no lower

6 Summary

We presented experimental results on the universality of B¨uchi automata. We showed
that a fully symbolic approach scales better and is overall faster than explicit ap-
proaches. Our results indicate that the fully explicit approach is quite effective at mini-
mizing the intermediate automata, but the time it spends on optimizing the state space is
prohibitive. Searching explicitly without optimizationsis also ineffective for the same
reason–the state space is too large and in most cases we ran out of time. Only the fully
symbolic approach was able to handle automata of reasonablesize, and it scales better
than the other two approaches. We also showed experimentally that in the context of
the random model, using a small initial maximal rank (three)is faster up to two orders
of magnitude and produces a correct answer with a very high probability (100 % in our
experiments).

There are several natural extensions of this work. On one hand, in the incremental
approach one can reuse the BDDs for the lower ranks as we increase the ranking of
the initial state. Unfortunately, the closed-source Cadence SMV does not allow us to
get access to the underlying BDDs. An open source model checker like NuSMV is an
obvious choice, but our current symbolic models are not directly usable on NuSMV
because NuSMV has a less expressive language. Once we have a NuSMV encoding we
can add hooks into the source code of the model checker that can allow us finer control
over the data structures. Further optimization of the symbolic construction presented
here can be achieved by exploiting the observation in [13] that the rank of each vertex
is at most2(n−|α|). For automata with a high number of accepting states this will lead
to a significant reduction of the state space. Another direction for research is to use
subsumption and keep only maximal sets of states; this idea has been used successfully
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by [31] in the context of NFAs and in [8] for Büchi automata. Again, for this to be
achieved we need a fine control over the underlying data structure. A third extension of
this paper is to leverage the idea oftight rankspresented in [10]. In that work Friedgut
et al. show that instead of considering all possible rankings we may restrict attention to
a special class of level rankings, thus reducing the size of the reachable state space.

Our work also raises a question about the effectiveness of BDDs for this type of con-
structions. In the complementation construction there is amixture of sets of numbers
(the ranks) and sets of bits (the obligation sets). Encodingintegers in binary represen-
tation seems unnatural, which suggests the need for hybrid data structures. We believe
that this point deserves further exploration.
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terministic Büchi automata. In12th Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, volume 2860 ofLNCS, pages 96–110. Springer-
Verlag, 2003.

14. R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPAN. InComputer Aided Verification, Proc.
8th International Conference, volume 1102 ofLNCS, pages 423–427. Springer-Verlag, 1996.

15. G. J. Holzmann.The SPIN model checker: Primer and reference manual. Addison Wesley,
2004.



14 Deian Tabakov and Moshe Y. Vardi

16. N. Klarlund. Progress measures for complementation ofω-automata with applications to
temporal logic. InProc. 32nd IEEE Symp. on Foundations of Computer Science, pages 358–
367, San Juan, October 1991.

17. A. M. C. A. Koster, H. L. Bodlaender, and C. P. M. van Hoesel. Treewidth: Computational
experiments. ZIB-Report 01–38, Konrad-Zuse-Zentrum fürInformationstechnik Berlin,
Berlin, Germany, 2001. Also available as technical report UU-CS-2001-49 (Utrecht Uni-
versity) and research memorandum 02/001 (Universiteit Maastricht).

18. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.ACM Trans.
on Computational Logic, 2001(2):408–429, July 2001.

19. R.P. Kurshan.Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press, 1994.

20. L.H. Landweber. Decision problems forω–automata.Mathematical Systems Theory, 3:376–
384, 1969.
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A Partial SMV encoding example
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Fig. 6.Example automaton

module main() {
/* The ranking function */
rank: array 0..2 of 0..7;
/* The P-set vector */
subset: array 0..2 of boolean;
/* The transition letter */
letter: {0,1};
/* Define the initial state. */
init(rank) := [6,7,7];
/* The P-set is initially empty */
init(subset) := [0,0,0];

/* Define the rank of state 0 in the next time step */
next(rank[0]) := (7);

/* Define the rank of state 1 in the next time step */
if (letter=0) {

next(rank[1]) := (( (rank[0] = 7) & (rank[2] = 7) ) ? 7 :
{i: i=0..6, ((i <= rank[0]) & (i <= rank[2]) )});

}
else {

next(rank[1]) := (7);
}
/* Defining the transitions of the P-set */
if (subset = [0,0,0]) {

/* The P-set is empty */
next(subset[0]) := ( next(rank[0]) in {0,2,4,6} );
next(subset[1]) := ( next(rank[1]) in {0,2,4,6} );
next(subset[2]) := ( next(rank[2]) in {0,2,4,6} );

}
else {

if (letter=0) {
next(subset[2]) := 0;
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}
else {
next(subset[2]) := (( subset[0] ) & ( next(rank[2]) in {0,2,4,6} ));

}
} /* Else (P-set non empty)*/

SPEC
0;

FAIRNESS
subset = [0,0,0];

}

B Partial SPIN encoding example

bool letter[1]; /* The encoding of the transition letters */
mtype = { n7, n6, n5, n4, n3, n2, n1, n0 }

active proctype model() {

/* The ranking function*/
mtype rank[3];
mtype next_rank[3];
/* Encode the obligation set as a boolean vector */
bool obligation[3] = false;
bool next_obligation[3] = false;
mtype min_rank;
/* Define the initial state of the system */
rank[0] = n6; rank[1] = n7; rank[2] = n7;

do ::
/* "Driver" for selecting the transition letter */
if

:: true-> letter[0] = true;
:: true-> letter[0] = false;

fi;
/** State 1 ****/

if
:: (letter[0] == false) ->

/* Find the min rank of all predecessors on letter 0 */
min_rank = n7;
/* State 0 is a predecessor */
if
:: (rank[0] < min_rank) -> min_rank = rank[0];
:: else -> skip;

fi;
/* State 2 is a predecessor */
if
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:: (rank[2] < min_rank) -> min_rank = rank[2];
:: else -> skip;

fi;
/* Make a nondeterministic choice up to min_rank */
if
:: (n0 <= min_rank) -> next_rank[1] = n0;
:: (n1 <= min_rank) -> next_rank[1] = n1;

...
:: (n6 <= min_rank) -> next_rank[1] = n6;
:: else -> next_rank[1] = n7;

fi;
:: else ->

/* No predecessors for state 1 on letter 1 */
next_rank[1] = n7;

fi;
...

/* Make the transition to the next time step */
rank[0] = next_rank[0]; rank[1] = next_rank[1]; rank[2] = next_rank[2];

/* Handle the obligation set */
if

:: (! obligation[0]) && (! obligation[1]) && (! obligation[2]) ->
/* The obligation set is empty. Keep the even ranks */

accept: next_obligation[0]=((next_rank[0]==n0)||...||(next_rank[0]==n6));
:: else ->

/* There are still obligations to be fulfilled */
if
:: (letter[0] == false) ->

...
:: else ->

...
fi; /* Transitions letter branch */

fi; /* Empty/nonempty obligation set branch */
/* Make the transition to the next time step */
obligation[0] = next_obligation[0];
...

od;
} /* End of model() */


