Model Checking Blchi Specificationg

Deian Tabakov and Moshe Y. Vardi

Department of Computer Science, Rice University, Houstoh,
{dt abakov, vardi }@s. rice. edu

Abstract. Efficient complementation of nondeterministic Buchi angda is es-
sential for the automata-theoretic approach to prograrificegion. This work
presents an empirical comparison between explicit and s{imbnplementa-
tions of the Kupferman-Vardi complementation construttio order to compare
the two approaches, we study automaton universality, defpecse of the model
checking problem. A novel encoding presented here allowsptioblem to be
solved symbolically via a standard model checker. We comfie performance
of an explicit-search(SPIN) and asymbolic-searcfSMV) model checkers on
randomly generated automata. We compare these resultthwigierformance of
an explicit-encoding explicit-searcbomplementation tool (Wring) on the same
set of automata. Our main finding is that a purely symbolicdeg@gh significantly
outperforms the two other approaches.

1 Introduction

The automata-theoretic approach to program verificatitowal questions about the
correctness of a program with respect to its specificatiortsetreduced to questions
about language containment [29]. To check that the langoage automatom p is
contained in the language ofs, we check whether the intersection 4 with the
complement ofds is empty. In the automata-theoretic framework the automatp
usually is an abstraction of the program atg represents the property that we want to
verify. Thus, complementation of nondeterministic finitéanata is a key problem of
model checking.

If the property is given in terms of a formulain a temporal logic we can avoid
the complementation step by first negating the formula aed ttonstructing the cor-
responding automatod-, [29]. If, however, the property is given as an automaton
Ag, constructing the complementary automatbg can be computationally demand-
ing. Automata on finite words are not powerful enough to repne¢liveness and fairness
properties of non-terminating programs. The framework mifdiautomata on infinite
words provides the expressive power that we need, but wetbaagy for it in terms of
more expensive operations.

Automata on infinite words are usually classified accordintp&iracceptance con-
dition. Several acceptance conditions—for example, Buichi, &uRabin, Streett, and
parity—have been proposed and studied extensively [11e Me consideBuchi au-
tomata where a subset of the states are designated as acceptawy atad an infinite

* Supported in part by NSF grant CCR-0311326, BSF grant 9880089 an Intel gift.

2 Deian Tabakov and Moshe Y. Vardi

word is accepted if and only if there is a run that visits sorhéhe accepting states
infinitely often [3]. Buchi automata can be further clagsifiaccording to their transi-
tion relations. In aeterministicautomaton each state has a unique successor for each
input letter. Innondeterministi@utomata a state may have multiple successors on the
same input letter. Deterministic Blichi automata arethjriess expressive than nonde-
terministic Buchi automata [20], that is, there is a larguaver infinite words which is
recognized by a nondeterministic Biichi automaton but otlbbe recognized by any de-
terministic automaton. Nondeterministic Buichi autone@more natural for express-
ing properties of programs, but complementing those aut@manore expensive. Since
Buchi’s original construction [3] the field has witnesseshtendous development [10,
16, 18,21, 23].

Experimental research on Biichi complementation has keggirlg behind theo-
retical research, which may explain why an automata-thieareodel checker such as
COSPAN allows only deterministic automata to be used toigppooperties [14, 19].
Tasiran et al. [28] and Althoff et al. [1] described implerntetions of Safra’s deter-
minization construction [23], which is the basic step fofr&a complementation. Both
of these implementations had to deal with the highly invdidata structures presentin
Safra’s construction. Gurumurthy et al. [13] combined thgpferman-Vardi construc-
tion [18] with several new minimization techniques and iempknted it as an extension
of the Wring tool [12]. Wring maintains the state space eitlji, and performs the
complementation and minimization steps explicitly. Itsfpemance on automata ob-
tained from linear temporal formulas is quite good [13]. Hwer, [13] focuses just on
complementation and does not study the underlying modekihg problem, nor does
it evaluate performance on general Biichi automata.

There have been some attempts at a symbolic implementatibe ipast. Tasiran’s
implementation [28] uses BDDs to encode the labeled ordeess of Safra’s con-
struction, but, as noted by the authors, the involved datietsires prevents a fully sym-
bolic implementation of the transition function. On the etthand, the simplicity of
Kupferman-Vardi’s construction lends itself quite natlyréo a fully symbolic imple-
mentation and in this paper we present two symbolic implaatems of that construc-
tion. We study complementation by looking at model checl&iighi specifications.
We consider a simplified setting where the program automgésrerates all infinite
traces, and the model checking problem is then equivalecti¢oking if A5 is empty,
or, equivalently, to checking ifi s is universal. This work provides the first systematic
experimental evaluation of Buchi universality in the atitof model checking.

Our contribution is three-fold. First, we present expentaéresults about the uni-
versality of nondeterministic Biichi automata generatambeding to the random model
of [26, 31]. Under this model we vary the “hardness” of thelppeon by controlling the
density of transitions (i.e., the ratio of transition pepin letter to total states) and the
density of accepting states (i.e. the ratio of acceptintgstto total states). We show
empirically that this model does yield an interesting pewsblspace. The probability
of universality increases from 0 to 1 with the transition signand (less pronounced)
with the accepting state density. We also use the random Inimdudy the size of
the complementary automaton (the tool Wring generatesdhgtementary automa-
ton explicitly), and show that the complementary automatoreases in size with both

Model Checking Buichi Specifications 3

transition density and accepting state density. Thesdtsesonfirm that this random
model does provide an interesting source of benchmark @nadl

Our second contribution is a direct experimental comparisetween Wring and
two symbolic implementations of the Kupferman-Vardi coustion. To solve univer-
sality symbolically we observe that the complementary mation can be viewed as a
nondeterministic synchronous sequential circuit withrfags constraints. Checking for
emptiness is equivalent to checking for the presence offatpat visits an accepting
state infinitely often (dassq. This can be expressed as a temporal property of the cir-
cuit, which allows us to express the universality problera asodel checking problem
and solve it symbolically via a model checker. We used Cagl&M\\V! and SPIN [15].
The two model checkers present two fundamentally diffeneyts of solving the prob-
lem. Both allow asymbolicencoding of the state space and the transition relation, but
Cadence SMV searches for a lassanbolically[5], while SPIN searchesxplicitly
[7]. In contrast, Wring maintains the state space and géeethe complementary au-
tomatonexplicitly, which is then searched for a lasso using SPIN. Comparinthtee
approaches can give us insight into whether symbolic origkplgorithms for Biichi
complementation have better performance “in practice'r. (@sults show that the fully
symbolic approach significantly outperforms the other twdact, explicit construction
of the complementary automaton is a challenge even for ttoeraata with six states.

Our third contribution focuses on the key idea in the Kupfanrvardi construction—
usingrankedsubsets as the states of the complementary automata, vardeésran
integer that measure “progress” toward fair terminatiod] [An obvious optimization
heuristic is to bound the maximum rank used in the conswucte report on empirical
experiments that indicate that when attempting to estaiiznuniversality, a small
maximum rank is typically sufficient.

2 Preliminaries

In this section we introduce the notation used throughadsighper and review the rele-
vant details of [18]. Anondeterministic) Bchi automators a tupled = (X, Q, gin, p, @),
where X' is a finite nonempty alphabef is a finite nonempty set of stateg,, € Q
is the initial statepr C @ is the set of accepting states, and- Q x ¥ — 2% is a
transition relation. A run isicceptingiff it visits « infinitely often. A wordw € X«
is accepted by if A has an accepting run an. The words accepted by form the
language of4, denoted by.(A).

A level rankingfor A is a functiong : @ — {0...2n} U {L} such that ifg(q)
is odd, theng ¢ «. Let G be the set of all level rankings. For two level rankings
andg’, we say thay coversg’ if for all ¢ andq/, if g(q) # L andq’ € é(q,0), then
0 < ¢'(¢") < g(q) (note that wherg(q) = L the ranking of¢’ is left unspecified). We
say thaty minimally coverg/’ if g coversy’ and whenevey’'(¢') # L, then there exists
g such that € §(¢,0) andg(q) # L.

LetB = (¥, Q, ¢in, 6, o) be a Bichi automaton. Definé = (X, Gx29 ¢/, , &', Gx
{0}), where

Yhttp://ww. cadence. conf conpany/ cadencel abs_r esear ch. ht n

4 Deian Tabakov and Moshe Y. Vardi

- ¢, = {(gin,0) whereg,, is a level ranking that satisfieg,,(¢;n) = 2n and
gin(Q) = 1 forall q 7é Qin -
— For astatdg, P) € G x 2% and a letter € ¥, we define’({(g, P), o) as follows:
o If P #0,thend’({(g, P),o) = {{g’, P’) : g minimally coversy’, and
P’ ={q : thereisg € P suchthay/ € §(q,0) andg’(¢’) is ever} }.
o If P =0,thend({g, P),o) ={{¢’, P') : ¢ minimally coversy’ and
P'={g :g'(d)isever}.

Theorem 1 (KV01).Let B and N be defined as above. Th&iN) = X“\ L(B).

Intuitively, this construction is an extension of the claabsubset construction for
NFAs. The classical construction keeps track of subsetg éach state in the subset
has an associated rank. The transitions are defined sucththaanks of the states
along infinite paths are non-increasing. In addition, ntesisallowed to get stuck at
an even rank. To check for this we have another subset catistihat keeps track of
states that “owe” a pass through an odd raRk (The acceptance condition states that
infinitely often all states fulfill this obligation®¢ = ().

Recall that using the automata-theoretic approach a pmogtés abstracted to an
automatond p; we want to check if it is a model of a property which is represented
by an automatomMg. This is equivalent to deciding the language inclusion b
L(Ap) C L(Ags) whichis solved by checking(Ap)NL(As) = 0. The product of the
two automata has size(|Ap|-|As|) [6], and checking for emptiness is NLOGSPACE-
complete [30]; both operations are relatively inexpensivmpared to the complexity
of complementingds. Thus, we propose to investigate the complementation p#reo
problem by considering a simplified setting. We det to be the universal automaton,
thatis,L(Ap) = X*. The model checking problem is then reduced to checkintif
is empty, or, equivalently, whetheks is universal. (The analogous problem for NFAs,
nondeterministic automata on finite words, has receivedesattention recently [26,
31].

3 Experimental Setup

Random Model: In the absence of a realistic benchmark suite, we use rarydpenk
erated automata. The random model described in [26, 31]igeeva framework for
experimental evaluation of automata-theoretic algorghiere we provide a brief de-
scription; for more details see [26]. Ldt= (X, Q, ¢in, p, @) be a Buchi automaton. In
our model the alphabét is the sef{0, 1}. For each lettes € X' we generate a random
directed graphD, on S with & edges, corresponding to transitiong, o). Hereafter
we refer to the ratio = % as thetransition density forr (intuitively, » represents
the expected outdegree of each nodedhprWe impose one exception for the initial
state: when building the random graphs we make sure thanitied hode has an out-
going transition for each letter of the alphabet, which balg avoid trivial cases of
non-universality. In this model the transition densitylaf and D, is the same, and we
refer to it as the transition density of. The number of accepting statesis also a
linear function of the total number of states, and it is gibgnanacceptance density

Model Checking Buichi Specifications 5

= ‘—gl‘ The accepting states themselves are selected randongyid@h of using a
linear density of some structural parameter to induce idiffebehaviors has been quite

popular lately, most notably in the context of random 3-S24][

Wring: Wring [12,25] is a tool written in Perl. Gurumurthy et al. [18ombined
the Kupferman-Vardi complementation algorithm with sev@&ew minimization tech-
niques and implemented it as an extension of Wring. Wring‘feiléy explicit” tool:
during complementation it maintains explicitly the setarfiked states and produces the
complementary automaton explicitly. Several simulati@sed minimization steps are
applied at various stages of the construction, thus redubia size of the intermediate
automaté

While Wring produces the complementary automaton, it choheck it for univer-
sality. For that purpose we encode the complementary adtonze a Promela model
and use SPIN [15] to search for an accepting cycle. Due to thenization steps, the
automata that Wring produces are much smaller than theedtiealr worst-case size.
This leads to relatively small Promela models, which are ehatiecked much faster
than the time it takes to compute the complementary autamatee times reported in
our experimental results include the time spent by Wrindghexdkomplementation step,
and by SPIN while it searches for an accepting cycle. Hezeafé usaNringto refer to
the sequence of complementing an automaton using Wringubsgguently searching
for a lasso using SPIN.

SPIN: SPIN [15] is an explicit-state model checker implementeirSPIN allows
the specification of concurrent systems using a high-leugliage Rr onel a). The
state-space and the transition relation can be encodedogigiily, but the state of the
system is maintained explicitly. SPIN works on-the-fly, waitit constructing the full
state-space a priori.

Cadence SMV:Cadence SMV [22] is a symbolic model checker implementél Da-
dence SMV is based dninary decision diagram@DDs) [2], which provide a canon-
ical representation for Boolean functions. BDDs are oftgdmstsantially more compact
than explicit representations, and have been used suabtgésfthe verification of cir-
cuits [5].

4 Symbolic Construction

Encoding using Cadence SMVin contrast to a recent paper by Finkbeiner [9] which
describes an algorithm for language containment for Bacihdmata that requires an
extension to BDDs (namelyjondeterministic BDDgs here we present a construction
that uses standard BDDs.

Let |Q| = n. In Cadence SMV we use two vectorsank andsubset , each of
sizen, such that a statgy, P) is represented byr @nk, subset). The elements of
subset are bits, and the elements oank are the numbers from 0 tn + 1. The
value2n + 1 represents the elementfrom the complementation construction, and the
numberdg) ... 2n represent the ranks.

2 Two of these minimization steps, DirectSimulationMinirtion() and PruneHeight(), led to
incorrect answers for some automata and had to be disabled.

6 Deian Tabakov and Moshe Y. Vardi

The initial state of the complementary automatbiis a ranking that assigns rank
2nto ¢;, and_L to all other states. Likewise, initially the obligation s is empty, thus
subset is initialized to all zeros. The transition letter is chosemdeterministically
(undefined variables can take any values from their domain).

To encode the transitions we use thext operator. The powerful set-constructing
primitives in Cadence SMV allow us to encode very succinitteycondition that ranks
are non-increasing. Finally, we asstafseand require, using a fairness condition in the
model, the obligation to be fulfilled infinitely often. In am@ty model the specification
holds, otherwise Cadence SMV returns a counterexampliaiiag that a fair cycle
has been found.

Encoding using SPIN:Encoding of the complementary automaton in Promela is based
on the same ideas as the encoding in Cadence SMV. HowevareRr less expressive
than Cadence SMV, making the encoding somewhat more cuothers

Unlike Cadence SMV, Promela does not provideext operator, so here we have
to maintain explicitly a vector of ranks for the current staind the next state, and
likewise for the current obligation set and the next obligraset. At the beginning of
each iteration a transition letter is chosen nondeteritintai$y. For each state we select
the lowest rank of its predecessors and use it to enforceadhéts are non-increasing
(Appendix B). We label the location in the model where thagatlon is fulfilled with
accept, and ask SPIN to search for fair cycles.

Optimizations: A straightforward BDD-based implementation usually needs fine-
tuned to get the best possible performance. In this sectiotescribe optimizations that
we applied to the symbolic implementation.

Fussy vs. Sloppy encodirithe Kupferman-Vardi construction can be relaxed in the
following way:

— If P #0,thend’ ({g, P),0) = {{¢’, P') : g coversy’, and

P’ D {q : thereisq € P suchthay’ € §(¢q,0) andg’(¢’) is ever}}.
— If P =10,thend({g, P),0) = {{¢', P") : g coversg’ and

P'D{4d :4¢(¢)iseven}.

We refer to the original encoding &sssy and to the new asloppy It is easy to see
why this modification does not change the universality ofdbiéomaton. Intuitively,
adding more states tB’ means that more states “owe” a visit to an odd rank. Similarly
in the sloppy encoding we modify the level ranking to alloates to take on an arbitrary
rank instead of being assigned rahkNotice that this optimization actually represents
three different optimizations: sloppy encoding of the riagkfunction alone, of the
obligation set alone, or both. In all three cases we are @sing the number of possible
runs, but the corresponding BDDs encoding the transitioa Ioe simpler.

Monolithic vs. Conjunctive partitionindn [4], Burch, Clarke and Long suggest an
optimization of the representation of the transition lielabf a sequential circuit. They
note that the transition relation is the conjunction of salvemall relations, and the
size of the BDD representing the entire transition relatitay grow as the product of
the sizes of the individual parts. This encoding is calleaholithic The method that
Burchet al. suggest represents the transition relation by a list oftcaimgs, which are

Model Checking Buichi Specifications 7

implicitly conjoined. Burchet al. call their methodconjunctive partitioningwhich is
the default encoding in Cadence SMV.

Jumping vs. CrawlingAnother optimization, suggested in [18], affects how the
ranks are reduced. In the original definition of level raigkia successor state can be
assigned any rank that is no larger than its predecessoeste¥@r to this agumping
We can restrict the level ranking such that instead of a ttiansto any rank smaller
than, a transition is enabled only to ranks — 1 and: — 2 (crawling). This restriction
does not change the language of the automaton (we can sinwatbig decrease via
several small ones), but it does reduce the number of pessamsitions, thus it may
lead to simpler BDDs.

BDD variable orderingWhen using BDDs, it is crucial to select a good order of
the variables. Finding an optimal order is itself a hard proh so one has to resort to
different heuristics. The default order in Cadence SMV w&dokon an internal heuristic.
The orders that we considered included the default orderttzamorder given by three
heuristics that are studied with respect to tree decompnsitMaximum Cardinality
Search [27] (MCS), LEXP and LEXM [17]. In our experiments M@®ved to be better
than LEXP and LEXM, so we will only report the results for MCi&dethe default order.

Forward and Backward State Traversdlraversal of the state space can be done
in two ways: we can start from the initial state and searchafetrongly connected
component that contains an accepting state, or start freraghof accepting states and
traverse the graph backward, searching for subset thatezah itself. The advantage
of forward traversalis that we only explore the reachable state space. On the othe
hand,backward traversahllows us to focus on the “relevant” subset of the state space
Cadence SMV allows both traversal methods to be used.

Incremental ApproachThe complementation construction initially assigns rank
2|@Q] to the initial state of the complementary automaférand_L to every other state.
However, if the source automatdhis non-universal, we might be able to find an ac-
cepting cycle starting with a lower initial ranking. L&t be the complementary au-
tomaton where the initial ranking assigns ranto the initial state; the original con-
struction then corresponds 19, . The sequence of automad, Ny, ..., Nojg|—1
under-approximated’ in the sense that only a subset of the state space is explored.
Consequentiallyl.(No) € L(N1) C ... € Nyjg|—1 € Nyjg)- If we are able to find an
accepting cycle inV; then the same cycle will be presenti\y | and both automata
will accept the same word. The advantage is that the stateesgdV; is much smaller
than that of N, for smalli’s. We studied the minimal rank required to prove non-
universality. This naturally leads to a non-universaligphistic: check non-universality
with a small rank, and if no accepting cycle is found, use thiecbnstruction.

5 Experimental Results

We fine tuned the performance of the symbolic approach byiderisg various com-
binations of the optimizations described in Section 4. Teceof some optimizations
was independent of the rest, while others led to worse padace when used in certain
combinations. We were able to achieve the best performasiog gonjunctive parti-
tioning, fussy encoding of the ranking function’s trarwits and sloppy encoding of the

8 Deian Tabakov and Moshe Y. Vardi

transitions of the obligation set, jumping rank reductiang backward traversal. The
results below refer to this configuration.

In Figure 1(aJ we present the probability of universality as a functionrafisition
densityr and accepting state densify To generate each data point we checked the
universality of 100 automata witli)| = 6. The behavior that we see is not surprising.
Increasing the transition density allows for more transisibetween the states and more
runs. Likewise, increasing the density of accepting stateans that more runs are
accepting.

H
@

o4
@

o
>

o
S

o
N

Probability of universality

so
Size of complemented automaton

Transition density (r) '

4
0 02 Density of final states (f)

. . &+ 0.4
Transition density (r) o o2 Density of final states (f)

(a) Probability of universality (automaton (b) Average size of complemented au-
size 6) tomaton generated Bi¥ring (|Q| = 4)

Fig. 1. The random model

Next we turn to the size of the complementary automaton.KdnNFAs, Biichi
automata do not have a canonical normal form. Here we conlidecomplementary
automata generated Byring (Recall thatWring applies simulation minimization to
the intermediate automata). Figure 1(b) presents thetsdfaulautomata withQ| = 4.
Each data point represents the median size of 100 autonfadirst discovery is that
the median size of the complementary automaton is much enthln the theoretical
worst-case size (331,776 states). We observe that thesdizggest for small transition
densities and zero for large transition densities. Thisiieh is quite intuitive; increas-
ing the number of transitions means that more automata dversal, or, equivalently,
that their complementis emptringis very effective at minimizing the size of the in-
termediate automata and as a result, the complementamnataat produces are very
small.

Landscape.In order to compare the performance of the three approachdsst use
them to complement automata with a fixed size. All experimeamre performed on the
Rice Terascale Clusteh{t p: //rcsg. rice. edu/rtc/), which is a large Linux
cluster of Itanium Il processors with 4 GB of memory each. Each datapoint we
generated 100 random automata, checked universality esicly of the methods, and
then took the median. The comparison was done on random atgamith|Q)| = 6.

We first report our results for the fully explicit approactaged onWring). Recall
that this approach has two phases: complementing the atdgomeplicitly using Wring

3 We recommend viewing the figures online in color (http://weswice.edu/ vardi/papers/).

Model Checking Biichi Specifications 9

and then searching for an accepting cycle using SPIN. Ourdissovery is that the
fully explicit method is unable to handle automata of thaésicross the whole density
landscape. This is most likely due Wring being written in Perl. On Figure 2(a) we
show the percentage of timeouts during the complementptiase as a function of
and f (the timeout period here is 3600 seconds per automaton)haituest problems
for the fully explicit method lie in the region with low accemce density, where the
timeout range is between 60% and 100%. Everywhere else lankscape the timeout
rate is low. Our observation is that the tool either retuh@sdomplementary automaton
within several hundred seconds, or times out. In all casesnvilring successfully
complemented the automaton, searching for an acceptirlg tyek under a second.
The optimizations that Wring applies to the intermediatmmata lead to a very small
complementary automaton, thus simplifying the job of thelei@hecker.

Percentage of timeouts

~o

1 04
ransition density () © 02 Density of final states (f)

— Time to check universality (seconds)

0.4
Transition density (r) 1 02 pensity of final states (f)

(a) Timeouts with fully explicit approach (b) Universality checking with fully ex-
(automaton size 6) plicit approach (automaton size 4)

Fig. 2. Fully explicit approach

In order to gain some insight into the time taken by the fultplecit method we
made the problem simpler. Instead of using 6-state autowmtssed 4-state automata.
Figure 2(b) presents the results. The data confirms theeeabiservation that the hard
problems are at low acceptance densities, however, nof #fleon are equally hard.
Aroundr = 1.5 we observe a peak and for> 1.5 the time taken is two orders of
magnitude higher than for low transition densities<{ 1, 5).

We next investigate the performance of the semi-symbakc $iymbolic-encoding,
explicit-search) approach usi®PIN As in the case for the fully explicit approach, we
observe that the semi-symbolic approach times is unablartdle automata of size 6
(Figure 3(a)). We observed timeout rates of 60%-100% for1.0 (the timeout period
here is again 3600 seconds per automaton). However, if weidemautomata of size
4 (Figure 3(b)) we see that the semi-symbolic approach oiaipes the fully explicit
approach by two and three orders of magnitude. In comparistmFigure 2(b), the
peak of the graph is shifted from= 1.5 tor = 2.5 and is less pronounced.

The data suggest that neither the fully explicit nor the seymbolic approach will
scale for automata with more than a few states. On one hamtllthh explicit approach
is very successful at minimizing the size of the intermedi#attomata, but the cost of the

10 Deian Tabakov and Moshe Y. Vardi

°

°

0.06

°

Percentage of timeouts

wo

IS
Time to check universality (seconds)

0.6 s

. . 0.4 Transition density () * 04 . .
Transition density () 1 02 pensity of final states (f) . R AU Density of final states (f)

06

(@) Timeouts with semi-symbolic ap- (b) Universality checking with semi-
proach (automaton size 6) symbolic approach (automaton size 4)

Fig. 3. Semi-symbolic approach

optimizations is prohibitive when the state space is la@ethe other hand, searching
the full state space explicitly with the semi-symbolic apgurh is quite effective for
small automata but infeasible when the state space in@ease

Figure 4 presents the results for the fully symbolic apphasgingCadence SMV
The immediate observation is that using the fully symbopipr@ach we are able to
check universality for all automata with size 6 in the larafse. The hardest problems
for this approach are again at low acceptance densitiel, avifeak atr = 2.0. For
low transition densitiesr(< 1.0) the performance of the fully symbolic approach is
worse by an order of magnitude than the semi-symbolic abrdaut unlike the semi-
symbolic approach, the fully symbolic one is able to handi®@ata with high«{ >
1.0) transition densities.

=
o

©

e to check universality (seconds)

0.6
. L1 0.4
ransition density () o o2 Density of final states (f)

S Tim

Fig. 4. Universality checking with fully symbolic approach (autaton size 6)

Our conclusion from this set of experiments is that the fsfynbolic approach
dominates the other two for automata with a fixed size. Nex$twdy the scaling of the
three approaches.

Model Checking Buichi Specifications 11

Scaling. A key idea from complexity theory is that performance congmar should
focus on scalability, that is, how running time scales withuit size. This allows us to
abstract away constant factors. The key idea is that we tegested in the approach
that allows us to solve the largest problems.

The results of our experiments on fixed-size automata stigiggisin order to get
some meaningful results we need to consider a point on tlistape where all ap-
proaches can return before the timeout period. We selgeted = (1.0,0.5) and
considered automata sizes between 4 and 10 in increment3bé2lata are presented
on Figure 5(a). Here we see that even though the semi-sycdqmbiroach performs the
best for small automata, this does not translate into bsti#ling. Indeed, of all three
approaches the one that scales the best is the fully symbalitonly this approach is
able to solve problems with size 10.

As pointed out before, the hardness of the problems is ndbumibut rather
changes as we vary the transition density. This is confirnyedus last set of exper-
iments. In Figure 5(b) we present the scaling of univengalitecking with the fully
symbolic method at different transition densities. As etpd, the “hard” problems
aroundr = 2.0 lead to the worst scaling, while problems witk= 3.0 andr = 1.0 are
easier to solve even for big automata.

-
S

—&— Fully Symbolic
—A— semi-Symbolic
Fully Explicit

—8—r=10

"
S,

Timeout

=
EN

"
e

3

=
3
@
o
=4

Time to check universality (seconds)

Time to check universality (seconds)

5
s ,\;
1
|
|
| \
|
|
|
|
|
|
|
|
|
|
|
|
Y

.
5

Automaton size Automaton size

(a) Scaling comparison of all three ap- (b) Scaling of fully symbolic approach
proaches«® = 1.0, f = 0.5) for different transition densities

Fig. 5. Scaling comparison

Incremental Heuristic. The last optimization described earlier (building the ctenp
mentary automaton incrementally) suggests an interekgngistic. Clearly, if the au-
tomaton is universal we will not be able to discover an adogptycle no matter what
initial ranking we choose. However, we discovered that wtienstarting automaton
is non-universal, choosing a small initial ranking retuting result sooner, while still
discovering an accepting cycle. We discovered empirichiff automata with higher
transition density require higher initial ranks (see TableThis behavior is expected:
the higher the number of transitions, the harder it is to owe/one that the automa-
ton is not universal. In all cases, however, we were ablegoadier an accepting cycle
(when one exists) using initial ranking 3 or smaller (we ¢desed automata with sizes
6 and 8, where the original algorithm would require initiahkings of 12 and 16 ac-
cordingly). Thus, we propose the following heuristic: given automaton, first try to

12 Deian Tabakov and Moshe Y. Vardi

discover a cycle in the complementary automaton while uamgnitial ranking 3. In
this case the state-space is significantly smaller thantétte-space for the original al-
gorithm, thus allowing us to get a result sooner. If we araiansssful we can then run
the algorithm with initial rankin@|Q@|. To test our heuristic we checked universality
of automata with size 10. Using initial ranking 3 returned ttorrect result in 100%
of the cases, and the time savings were significant. The s$teusped up the perfor-
mance by two orders of magnitude for the hardest problemsZ.0) and twice as fast
for the easiest problems (at= 0.5). (It is known that initial rank2n is required in
general [13].)

Q=6 Q=8
Transition densityrank Qrank 1rank Zrank 3{rank Jrank ljrank 2rank 3
r=1.0 92 7 1 0 90 10 0 0
r=2.0 68 32 0 0 56 36 7 1
r=3.0 9 90 1 0 17 83 0 0

Table 1. Number of automata (out of 100 nonuniversal automata) fackvan accepting cycle
was discovered with the indicated initial ranking and nodow

6 Summary

We presented experimental results on the universalityusfhiBautomata. We showed
that a fully symbolic approach scales better and is oveedtefr than explicit ap-
proaches. Our results indicate that the fully explicit ayguh is quite effective at mini-
mizing the intermediate automata, but the time it spendptimizing the state space is
prohibitive. Searching explicitly without optimizatiofsalso ineffective for the same
reason-the state space is too large and in most cases wetmairtiowe. Only the fully
symbolic approach was able to handle automata of reasosiableand it scales better
than the other two approaches. We also showed experimettiall in the context of
the random model, using a small initial maximal rank (thiedaster up to two orders
of magnitude and produces a correct answer with a very higbatnility (100 % in our
experiments).

There are several natural extensions of this work. On ond,harthe incremental
approach one can reuse the BDDs for the lower ranks as weaseithe ranking of
the initial state. Unfortunately, the closed-source CadeBMV does not allow us to
get access to the underlying BDDs. An open source model endikle NuSMV is an
obvious choice, but our current symbolic models are notctliyaisable on NuSMV
because NuUSMV has a less expressive language. Once we hag&\M\encoding we
can add hooks into the source code of the model checker thaillcav us finer control
over the data structures. Further optimization of the sylimlmmnstruction presented
here can be achieved by exploiting the observation in [1& the rank of each vertex
is at mose(n — |a|). For automata with a high number of accepting states thidemsit
to a significant reduction of the state space. Another dordor research is to use
subsumption and keep only maximal sets of states; this idedden used successfully

Model Checking Buichi Specifications 13

by [31] in the context of NFAs and in [8] for Buchi automata.g#in, for this to be
achieved we need a fine control over the underlying datatsirelcA third extension of
this paper is to leverage the ideatigfht rankspresented in [10]. In that work Friedgut
et al. show that instead of considering all possible rarking may restrict attention to
a special class of level rankings, thus reducing the sizkefé¢achable state space.

Our work also raises a question about the effectiveness &f8Dr this type of con-
structions. In the complementation construction therensixure of sets of numbers
(the ranks) and sets of bits (the obligation sets). Encotiteggers in binary represen-
tation seems unnatural, which suggests the need for hyatalsiructures. We believe
that this point deserves further exploration.

References

1. C. Althoff, W. Thomas, and N. Wallmeier. Observations @tedminization of Buichi au-
tomata. In Jacques Farré, Igor Litovsky, and Sylvain Sehreditors,CIAA, volume 3845
of Lecture Notes in Computer Scienpages 262-272. Springer, 2005.

2. R.E. Bryant. Graph-based algorithms for boolean-fumctnanipulation.IEEE Trans. on
ComputersC-35(8), 1986.

3. J.R. Buchi. On a decision method in restricted secondraxdthmetic. InProc. Internat.
Congr. Logic, Method. and Philos. Sci. 196f&ages 1-12, Stanford, 1962. Stanford Univer-
sity Press.

4. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic modelotireg with partitioned
transition relations. IfProc. IFIP TC10/WG 10.5 International Conference on Verydea
Scale Integrationpages 49-58, 1991.

5. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.#Hwang. Symbolic model check-
ing: 10%° states and beyondnformation and Computatiqr98(2):142—170, June 1992.

6. Y. Choueka. Theories of automatawstapes: A simplified approactdournal of Computer
and System Sciences117-141, 1974.

7. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. YannakaKiéemory efficient algorithms
for the verification of temporal properties:ormal Methods in System Desjgti275-288,
1992.

8. Laurent Doyen and Jean-Francois Raskin. Improved ithgos for the automata-based ap-
proach to model-checking. IMACAS’07, to appear2007.

9. B. Finkbeiner. Symbolic refinement checking with nondetaistic BDDs. InTools and
algorithms for the construction and analysis of systeliNCS. Springer-Verlag, 2001.

10. E. Friedgut, O. Kupferman, and M. Y. Vardi. Buchi complntation made tighter. IATVA
pages 64-78, 2004.

11. E. Gradel, W. Thomas, and T. Wilke, editohsitomata, Logics, and Infinite Games: A Guide
to Current Researchvolume 2500 ot ecture Notes in Computer Scien&pringer, 2002.

12. S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulationimization. InComputer
Aided Verification, Proc. 14th International Conferengelume 2404 of. NCS pages 610—
623. Springer-Verlag, 2002.

13. S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Var@n complementing nonde-
terministic Blichi automata. 162th Advanced Research Working Conference on Correct
Hardware Design and Verification Methgd®lume 2860 0f.NCS pages 96-110. Springer-
Verlag, 2003.

14. R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPANClomputer Aided Verification, Proc.
8th International Conferencerolume 1102 of NCS pages 423-427. Springer-Verlag, 1996.

15. G. J. HolzmannThe SPIN model checker: Primer and reference mandaldison Wesley,
2004.

14

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Deian Tabakov and Moshe Y. Vardi

N. Klarlund. Progress measures for complementation-afitomata with applications to
temporal logic. InProc. 32nd IEEE Symp. on Foundations of Computer Sciqrages 358—
367, San Juan, October 1991.

A. M. C. A. Koster, H. L. Bodlaender, and C. P. M. van HoeSakewidth: Computational
experiments. ZIB-Report 01-38, Konrad-Zuse-Zentrum Ififormationstechnik Berlin,
Berlin, Germany, 2001. Also available as technical repdt-CS-2001-49 (Utrecht Uni-
versity) and research memorandum 02/001 (Universiteitdtfidnt).

O. Kupferman and M.Y. Vardi. Weak alternating automataret that weak ACM Trans.
on Computational Logic2001(2):408—-429, July 2001.

R.P. Kurshan.Computer Aided Verification of Coordinating Processeé®rinceton Univ.
Press, 1994.

L.H. Landweber. Decision problems forautomataMathematical Systems Thep8;376—
384, 1969.

C. Loding. Optimal bounds for the transformation of ga@utomata. IRroc. 19th Confer-
ence on the Foundations of Software Technology and Theaf€&omputer Scieng@olume
1738 ofLNCS pages 97-109, December 1999.

K.L. McMillan. Symbolic Model Checkindluwer Academic Publishers, 1993.

S. Safra. On the complexity af-automata. IrProc. 29th IEEE Symp. on Foundations of
Computer Sciencgages 319-327, White Plains, October 1988.

B. Selman, D. G. Mitchell, and H. J. Levesque. Generatimgl satisfiability problems.
Artificial Intelligence 81(1-2):17—-29, 1996.

F. Somenzi and R. Bloem. Efficient Biichi automata frorh fdrmulae. InCAV, Proc. 12th
International Conferengevolume 1855 of NCS pages 248-263. Springer-Verlag, 2000.
D. Tabakov and M. Y. Vardi. Experimental evaluation afssical automata constructions.
In LPAR pages 396-411, 2005.

R. E. Tarjan and M. Yannakakis. Simple linear-time atgans to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reducebchypergraphsSIAM J. Comput.
13(3):566-579, 1984.

S. Tasiran, R. Hojati, and R.K. Brayton. Language comtaint of non-deterministic omega-
automata. IrProc. of 8th CHARME: Advanced Research Working ConferencEarect
Hardware Design and Verification Methqdsolume 987 ofLNCS pages 261-277, Frank-
furt, October 1995. Springer-Verlag.

M.Y. Vardi and P. Wolper. An automata-theoretic apphocautomatic program verifica-
tion. In Proc. 1st Symp. on Logic in Computer Scieruages 332—-344, Cambridge, June
1986.

M.Y. Vardi and P. Wolper. Reasoning about infinite corafiohs. Information and Compu-
tation, 115(1):1-37, November 1994.

M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin.ti8hains: A new algorithm for
checking universality of finite automata. GAV, pages 17-30, 2006.

Model Checking Biichi Specifications

A Partial SMV encoding example

O~
1
Fig. 6. Example automaton

nmodul e main() {

/* The ranking function */
rank: array 0..2 of 0..7;

/* The P-set vector */

subset: array 0..2 of bool ean;
/* The transition letter */
letter: {0, 1};

/* Define the initial state. */
init(rank) :=1[6,7,7];

/* The P-set is initially enpty */
init(subset) :=10,0,0];

/* Define the rank of state O in the next time step */
next (rank[0]) := (7);
/* Define the rank of state 1 in the next tine step */
if (letter=0) {
next (rank[1]) := (((rank[O0]

7) & (rank[2] =7)) ? 7 :

{i: i=0..6, ((i <=rank[0]) & (i <=rank[2]))});
}
el se {
next (rank[1]) := (7);
}

/* Defining the transitions of the P-set */
if (subset =[0,0,0]) {
/* The P-set is enpty */

next (subset[0]) := (next(rank[O0]) in {0,2,4,6});
next (subset[1]) := (next(rank[1]) in {0,2,4,6});
next (subset[2]) := (next(rank[2]) in {0,2,4,6});
}
el se {

if (letter=0) {
next (subset[2])

I
L

15

16 Deian Tabakov and Moshe Y. Vardi

}

el se {

next (subset[2]) := ((subset[0]) & (next(rank[2]) in {0,2,4,6}));

}
} /* Else (P-set non enpty)*/

SPEC
0;

FAI RNESS
subset =[0,0,0];

B Partial SPIN encoding example

bool letter[1]; /* The encoding of the transition letters */
nmype = { n7, n6, n5 n4, n3, n2, nl, n0 }

active proctype nodel () {

/* The ranki ng function*/

ntype rank[3];

ntype next_rank[3];

/* Encode the obligation set as a bool ean vector */
bool obligation[3] = fal se;

bool next_obligation[3] = fal se;

ntype m n_rank;

/* Define the initial state of the system?*/
rank[0] = n6; rank[1l] = n7; rank[2] = n7;

do ::
/* "Driver" for selecting the transition letter */

if
true-> letter[O0]
true-> letter[O0]

true;
fal se;

fi;
[** State 1 **x*/
if
(letter[0] == false) ->
/* Find the min rank of all predecessors on letter 0 */
m n_rank = n7;
/* State 0 is a predecessor */
i f
(rank[0] < min_rank) -> mn_rank = rank[O0];
el se -> skip;
fi;
/* State 2 is a predecessor */
i f

Model Checking Biichi Specifications 17

(rank[2] < min_rank) -> mn_rank = rank[2];
el se -> skip;

fi;
/* Make a nondeterninistic choice up to min_rank */
if
22 (n0 <= min_rank) -> next_rank[1] = nO;
(nl <= min_rank) -> next_rank[1] = nil;
(n6 <= min_rank) -> next_rank[1] = n6;
i else -> next_rank[1] = n7;
fi;
el se ->

/* No predecessors for state 1 on letter 1 */
next _rank[1] = n7;
fi;

/* Make the transition to the next time step */
rank[0] = next_rank[O0]; rank[1] = next_rank[1]; rank[2] = next_rank[2];

/* Handl e the obligation set */

if
(! obligation[0]) && (! obligation[1]) && (! obligation[2]) ->
/* The obligation set is enpty. Keep the even ranks */
accept: next _obligation[0]=((next_rank[0]==n0)|]|...|]| (next_rank[0]==n6));
el se ->
/* There are still obligations to be fulfilled */
if
(letter[0] == false) ->
el se ->

fi; /* Transitions letter branch */
fi; /* Enpty/nonenpty obligation set branch */
/* Make the transition to the next time step */
obligation[0] = next_obligation[0];

od;
} /'* End of nodel () */

