
Endmarkers Can Make a Difference

Moshe Y. Vardi∗

IBM Almaden Research Center

Abstract

We show that the nonemptiness problem for two-way automata with only one endmarker
over unary alphabets is complete for nondeterministic logarithmic space. This should be
contrasted with the corresponding problem for two-way automata with two endmarkers,
which is known to be NP-complete.

1 Introduction

Rabin and Scott [RS59] introduced two-way finite automata, which are allowed to move
in both directions along their input tape. One may ask whether adding endmarkers to
input tapes will cause an increase in expressive power of two-way automata, because of
the added ability of the automata to go to the beginning or the end of the tape checking
for a certain property. As was observed by Shepherdson [Sh59], this is not the case, since
two-way automata are equivalent to one-way automata, and the latter can simply guess
the beginning and end of the input tape.

We show here that while endmarkers do not add any expressive power, they can
cause an increase in computational complexity. We consider the nonemptiness problem
for two-way automata over unary alphabets. It is known that for two-way automata with
two endmarkers the problem is NP-complete [Ga76]. We show here that with only one
endmarker the problem is complete for nondeterministic logarithmic space.

Interestingly, the new result was motivated by a practical application related to opti-
mization of database logic programs. In that application, automata over unary alphabets
(with only one endmarker) are used to detect certain mappings between database queries.
See [Va88] for details.

∗Part of the research reported here was done while the author was visiting the Weizmann Institute
of Science, Rehovot, Israel. Address: IBM Almaden Research K53-802, 650 Harry Rd., San Jose, CA
95120-6099.

1

2 Basic Definitions

A (nondeterministic) two-way automaton A = (Σ, S, S0, ρ, F) consists of an alphabet Σ,
a finite set of states S, a set of initial states S0 ⊆ S, a transition function ρ : S × Σ →
2S×{−1,0,1}, and a set of accepting states F ⊆ S. Intuitively, a transition indicates not
only the new state of the automaton, but also whether the head should move left, right,
or stay in place.

A configuration of A is a member of S × IN , i.e., a pair consisting of a state and a
“position”. A run is a sequence of configurations, i.e., an element of (S × IN)?. The run
(s0, j0), . . . , (sm, jm) is a run of A on a word w = a0 . . . an−1 in Σ? if 0 ≤ jm ≤ n, and for
all i, 0 ≤ i < m, we have that 0 ≤ ji < n, and there is some (t, k) ∈ ρ(si, aji

) such that
si+1 = t and ji+1 = ji + k. This run is accepting if s0 ∈ S0, j0 = 0, jm = n, and sm ∈ F .
A accepts w if it has an accepting run on w.

The set of words accepted by A is denoted by L(A). The nonemptiness problem
for two-way automata is to determine, given a two-way automaton A, whether L(A) is
nonempty. It is known that the nonemptiness problem for two-way automata is PSPACE-
complete [Ga76].

Let b and e be fixed symbols, designating left and right endmarkers, respectively. A
two-way automaton with endmarkers A = (Σ, S, S0, ρ, F) consists of an alphabet Σ that
does not contain b or e, a finite set of states S, a set of initial states S0 ⊆ S, a transition
function ρ : S× (Σ∪{b, e}) → 2S×{−1,0,1}, and a set of accepting states F ⊆ S. A accepts
a word w ∈ Σ∗ if it has an accepting run over bwe (i.e., w with b concatenated from the
left and e concatenated from the right). A two-way automaton with a left (resp., right)
endmarker has only the endmarker b (resp., e). It accepts a word w ∈ Σ∗ if it has an
accepting run over bw (resp., we).

The nonemptiness problem for two-way automata with endmarkers is PSPACE-complete;
if restricted to unary alphabets (i.e., alphabets consisting of a single symbol), then the
problem is NP-complete [Ga76].

3 Automata with No Endmarker

We first consider automata with no endmarker.

Proposition 3.1: Let A be a k-state two-way automaton over a unary alphabet Σ = {a}.
If L(A) is nonempty, then an ∈ L(A) for some n < 2k.

Proof: Let A = (Σ, S, S0, ρ, F). Let (s0, j0), . . . , (sm, jm) be an accepting run of A of
shortest length. Let jm = n (i.e., the length of the input word is n). Define H(i) =
min{jp | i ≤ p ≤ m} for 0 ≤ i ≤ m. Intuitively, H(i) is the leftmost position reached at
or after the configuarion (si, ji).

Claim 1: ji −H(i) ≤ k for 0 ≤ i ≤ m. Suppose to the contrary that there exist some
i such that ji − H(i) > k. There there are p, q such that i ≤ p < q ≤ m, sp = sq, and

2

jp > jq. But then, for d = jp − jq > 0, we have that (s0, j0), . . . , (sp, jp), (sq+1, jq+1 +
d), . . . , (sm, jm + d) is an accepting run of A of length m − d < m (on a word of length
n + d > n) – contradicting our assumption on the minimality of m.

Claim 2: n < 2k. Suppose to the contrary that n ≥ 2k. Define I(j) = min{p | jp = k+j}
for 0 ≤ j ≤ k. Intuitively, I(j) is a pointer to the first configuarion to reach the
position k + j. Clearly, I(j) < I(j + 1) for 0 ≤ j < k. Thus, there are p, q such
that 0 ≤ p < q ≤ k and sI(p) = sI(q). Let d = jI(q) − jI(p) = q − p > 0. Then
we have that (s0, j0), . . . , (sp, jp), (sq+1, jq+1 − d), . . . , (sm, jm − d) is an accepting run of
A of length m − d < m (on a word of length n − d < n). This run is legal, since
H(I(q))− d ≥ jI(q) − k − d = k + q − k − d = p ≥ 0, by Claim 1. We have contradicted
our assumption on the minimality of m, so we must have n < 2k.

4 Automata with Right Endmarkers

Let A = (Σ, S, S0, ρ, F) be a two-way automaton with a right endmarker over the unary
alphabet Σ = {a}. Let Rn ⊆ S2, n > 0, be the set of state pairs s, t such that there is a
run (s0, j0), . . . , (sm, jm) of A on an, where j0 = jm = n− 1, s0 = s, and sm = t. That is,
(s, t) ∈ Rn if A has a run on an starting on the right in state s and ending on the right
in state t.

We now prove several properties of the relations Rn, n ≥ 0.

Lemma 4.1: (s, t) ∈ Rn if and only if there is a sequence s0, . . . , sm−1 such that s = s0,
t = sm−1, and for all i, 0 ≤ i < m− 1 we have that either

• (si+1, 0) ∈ ρ(si, a), or

• there are states s′i and s′′i such that (s′i,−1) ∈ ρ(si, a), (s′i, s
′′
i) ∈ Rn−1, and (si+1, 1) ∈

ρ(s′′i , a).

Proof: It is easy to see that the condition is sufficient. For the converse, assume that
(s, t) ∈ Rn. Then there is a run (s0, j0), . . . , (sm, jm) of A on an, where j0 = jm = n− 1,
s0 = s, and t0 = t. Let k, l be such that k < l, jk = jl = n − 1, and jk′ < n − 1 for
k < k′ < l. If l = k + 1, then we must have (sl, 0) ∈ ρ(sk, a). Otherwise, l > k + 1,
in which case (sk+1,−1) ∈ ρ(sk, a), (sl, 1) ∈ ρ(sl−1, a), and (sk+1, jk+1), . . . , (sl−1, jl−1) is
a run of A on an−1, where jk+1 = jl−1 = n − 2. Thus, (sk+1, sl−1) ∈ Rn−1. The claim
follows.

Lemma 4.2: Rn ⊆ Rn+1 for n ≥ 0.

Proof: Let (s, t) ∈ Rn. Then there is a run (s0, j0), . . . , (sm, jm) of A on an, where
j0 = jm = n − 1, s0 = s, and t0 = t. Clearly, (s0, j0 + 1), . . . , (sm, jm + 1) is a run of A
on an+1, where j0 = jm = n, s0 = s, and t0 = t. The claim follows.

3

Lemma 4.3: If Rn = Rn+1, then Rn+1 = Rn+2.

Proof: By Lemma 4.2, we have that Rn+1 ⊆ Rn+2. It remains to prove the inverse
containment.

Let (s, t) ∈ Rn+2. By Lemma 4.1, there is a sequence s0, . . . , sm−1 such that s = s0,
t = sm−1, and for all i, 0 ≤ i < m− 1 we have that either

• (si+1, 0) ∈ ρ(si, a), or

• there are states s′i and s′i+1 such that (s′i,−1) ∈ ρ(si, a), (s′i, s
′
i+1) ∈ Rn+1, and

(si+1, 1) ∈ ρ(s′i+1, a).

Since Rn = Rn+1, we can replace Rn+1 by Rn in the condition. It follows that (s, t) ∈
Rn+1.

From Lemma 4.2 and 4.3 we get:

Lemma 4.4: If |S| = k, then Rn = Rk2 for all n ≥ k2.

The Rn’s can be used to give a “one-way” characterization of acceptance (cf. [Sh59]).

Lemma 4.5: A accepts an if and only if there is a sequence t0, . . . , tm, m > n, such that

1. t0 ∈ S0 and tm ∈ F ,

2. for 0 ≤ i ≤ n− 1, there is a state t′i such that (ti, t
′
i) ∈ Ri+1 and (ti+1, 1) ∈ ρ(t′i, a),

3. for n ≤ i < m− 1, either (ti+1, 0) ∈ ρ(ti, e), or there are states t′i and t′′i such that
(t′i,−1) ∈ ρ(ti, e), (t′i, t

′′
i) ∈ Rn, and (ti+1, 1) ∈ ρ(t′′i , a),

4. (tm, 1) ∈ ρ(tm−1, e).

Proof: It is easy to see that the condition is sufficient. For the converse, assume that A
accepts an. Then there is an accepting run (s0, j0), . . . , (sp, jp) of A on ane. For each i,
0 ≤ i < n, let ki be minimal such that jki

= i, and let ti be ski
. Also, let tn, . . . , tm−1 be

the longest sequence sl1 , . . . , slm−n , where jli = n for 1 ≤ i ≤ m−n. Finally, let tm be sp.
Clearly, t0 ∈ S0, (tm, 1) ∈ ρ(tm−1, e), and tm ∈ F . For 0 ≤ i < n, let t′i be ski+1−1. Clearly,
(ti, t

′
i) ∈ Ri+1 and (ti+1, 1) ∈ ρ(t′i, a). Finally, for 1 ≤ i < m − n, either li+1 = li + 1,

in which case (ti+n, 0) ∈ ρ(ti+n−1, e), or (sli+1,−1) ∈ ρ(sli , e), (sli+1, sli+1−1) ∈ Rn, and
(sli+1

, 1) ∈ ρ(sli+1−1, a).

From Lemmas 4.5 and 4.4 it follows that there are “short witnesses” for nonemptiness.

Lemma 4.6: Suppose A has k states. If L(A) is nonempty, then an ∈ L(A) for some
n ≤ k2 + k.

4

Proof: Let n be minimal such that an ∈ L(A). Consider the sequence t0, . . . , tm guar-
anteed to exist by Lemma 4.5. Suppose n > k2 + k. Then there are p, q such that
k2 + 1 ≤ p < q ≤ k2 + k + 1 and tp = tq. Since Rp = Rq by Lemma 4.4, the sequence
t0, . . . , tp−1, tq, . . . , tm satisfies the condition of Lemma 4.5 for an+p−q. It follows that
an+p−q ∈ L(A) - contradicting the minimality of n.

5 Automata with Left Endmarkers

Let A = (Σ, S, S0, ρ, F) be a two-way automaton with a left endmarker over the unary
alphabet Σ = {a}. Let R̄n ⊆ S2, n > 0, be the set of state pairs s, t such that there is
a run (s0, j0), . . . , (sm, jm) of A on an, where j0 = jm = 0, s0 = s, and sm = t. That is,
(s, t) ∈ R̄n if A has a run on an starting on the left in state s and ending on the left in
state t.

The relations R̄n, n ≥ 0, are analogous to the relations Rn, n ≥ 0, of the previous
section. As in the previous section, we can prove the following property.

Lemma 5.1: If |S| = k, then R̄n = R̄k2 for all n ≥ k2.

As in the previous section, the R̄n’s can be used to give a “one-way” characterization
of acceptance.

Lemma 5.2: A accepts an if and only if there is a sequence t0, . . . , tm, m > n, such that

1. t0 ∈ S0 and tm ∈ F ,

2. for 0 ≤ i < m − n − 1, either (ti+1, 0) ∈ ρ(ti, b), or there are states t′i and t′′i such
that (t′i, 1) ∈ ρ(ti, b), (t′i, t

′′
i) ∈ R̄n, and (ti+1,−1) ∈ ρ(t′′i , a),

3. there is a state t′m−n−1 such that (t′m−n−1, 1) ∈ ρ(tm−n−1, b), and (t′m−n−1, tm−n) ∈
R̄n.

4. for m−n ≤ i < m− 1, there is a state t′i such that (t′i, 1) ∈ ρ(ti, a), and (t′i, ti+1) ∈
R̄m−i−1.

5. (tm, 1) ∈ ρ(tm−1, a).

Proof: It is easy to see that the condition is sufficient. For the converse, assume that
A accepts an. Then there is an accepting run (s0, j0), . . . , (sp, jp) of A on ban. Let
t0, . . . , tm−n−1 be the longest sequence sl1 , . . . , slm−n , where jli = 0 for 1 ≤ i ≤ m − n.
Also, for each i, m − n ≤ i ≤ m − 1, let ki be maximal such that jki

= i −m + n + 1,
and let ti be ski

. Finally, let tm be sp. The reader can verify that the sequence t0, . . . , tm
satisfies the required conditions.

From Lemmas 5.2 and 5.1 it follows that there are “short witnesses” for nonemptiness.

5

Lemma 5.3: Suppose A has k states. If L(A) is nonempty, then an ∈ L(A) for some
n ≤ k2 + k.

Proof: Let n be minimal such that an ∈ L(A). Consider the sequence t0, . . . , tm guar-
anteed to exist by Lemma 5.2. Suppose n > k2 + k. Then there are p, q such that
0 ≤ p < q ≤ k and tm−1−k2−p = tm−1−k2−q. Since R̄n = R̄n+p−q and R̄k2+p = R̄k2+q by
Lemma 5.1, the sequence t0, . . . , tp−1, tq, . . . , tm satisfies the condition of Lemma 5.2 for
an+p−q. It follows that an+p−q ∈ L(A) - contradicting the minimality of n.

6 Complexity

From Lemmas 4.6 and 5.3 we get:

Proposition 6.1: Let A be a k-state two-way automaton with only one endmarker over
a unary alphabet Σ = {a}. If L(A) is nonempty, then an ∈ L(A) for some n ≤ k2 + k.

Our main result follows from Proposition 6.1.

Theorem 6.2: The nonemptiness problem for two-way automata with one endmarker
over unary alphabets is complete for nondeterministic logarithmic space.

Proof: Hardness follows from the same result for one-way automata [Jo75]. It remains
to show that the problem is solvable in nondeterministic logarithmic space.

Let A be a two-way automaton with k states over a unary alphabet Σ = {a}. By
Proposition 6.1, if L(A) is nonempty, then an ∈ L(A) for some n ≤ k2 + k. To check
whether L(A) is nonempty, we guess a number n ≤ k2 + k, and then simulate A over ban

or ane. At any point of the simulation we just have to remember n and some configuration
(si, ji). This requires only logarithmic space.

Acknowledgements. I am grateful to the two referees for their helpful suggestions. In
particular, both referees suggested Proposition 3.1 and its proof.

References

[Ga76] Galil, Z.: Hierarchies of complete problems. Acta Informatica 6(1976), pp. 77–
88.

[Jo75] Jones, N.D.: Space-bounded reducibility among combinatorial problems. J.
Computer and System Sciences 11(1975), pp. 68–85.

[RS59] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J.
Research and Development, 3(1959), pp. 114–125.

6

[Sh59] Shepherdson, J.C.: The reduction of two-way automata to one-way automata.
IBM J. Research and Development, 3(1959), pp. 199–201.

[Va88] Vardi, M.Y.: Decidability and undecidability results for boundedness of linear
recursive queries. Proc. 7th ACM Symp. on Principles of Database Systems,
1988, pp. 341–351.

7

