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Abstra
tOne of the most important reasoning tasks on queries is 
he
king 
ontainment,i.e., verifying whether one query yields ne
essarily a subset of the result of anotherone. Query 
ontainment is 
ru
ial in several 
ontexts, su
h as query optimization,query reformulation, knowledge-base veri�
ation, information integration, integrity
he
king, and 
ooperative answering. Containment is unde
idable in general forDatalog, the fundamental language for expressing re
ursive queries. On the otherhand, it is known that 
ontainment between monadi
 Datalog queries and betweenDatalog queries and unions of 
onjun
tive queries are de
idable. It is also known that
ontainment between unions of 
onjun
tive two-way regular path queries, whi
h arequeries used in the 
ontext of semistru
tured data models 
ontaining a limited formof re
ursion in the form of transitive 
losure, is de
idable. In this paper we 
ombinethe automata-theoreti
 te
hniques at the base of these two de
idability results toshow that 
ontainment of Datalog in union of 
onjun
tive two-way regular pathqueries is de
idable in 2EXPTIME. By sharpening a known lower bound result for
ontainment of Datalog in union of 
onjun
tive queries we show also a mat
hinglower bound.Key words: query 
ontainment, semistru
tured data, Datalog, regular path queriesPreprint submitted to Elsevier S
ien
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1 Introdu
tionQuerying is the fundamental me
hanism for extra
ting information from adatabase. The basi
 reasoning task asso
iated to querying is query answer-ing, whi
h amounts to 
omputing the information to be returned as result ofa query. There are, however, other reasoning servi
es involving queries thatdata and knowledge representation systems should support. One of the mostimportant is 
he
king 
ontainment, i.e., verifying whether one query yieldsne
essarily a subset of the result of another one. Query 
ontainment, 
alledsubsumption in AI [1,2℄, is 
ru
ial in several 
ontexts, su
h as query opti-mization, query reformulation, knowledge-base veri�
ation, information inte-gration, integrity 
he
king, and 
ooperative answering; 
f. [3{13℄. Thus, it isfair to des
ribe query 
ontainment as one of the most fundamental databasereasoning tasks.Needless to say, query 
ontainment is unde
idable if we do not limit the ex-pressive power of the query language; it is 
learly unde
idable for �rst-orderlogi
. In fa
t, in knowledge representation suitable query languages have beendesigned for retaining de
idability. The same is true in databases, where thenotion of 
onjun
tive query is the basi
 one in the investigation of reasoningabout queries [14℄. A 
onjun
tive query (CQ) is simply a 
onjun
tion of atoms,where ea
h atom is built out from relation symbols and (existentially quanti-�ed) variables. Relationally, a CQ is a proje
t-join query. By adding union andre
ursion to 
onjun
tive queries, one gets Datalog, the language of logi
 pro-grams (known also as Horn-
lause programs) without fun
tion symbols [15℄,whi
h is essentially a fragment of �xpoint logi
 [16,17℄. Datalog 
onsists, in apure way, only of the most fundamental elements of relational queries: join,proje
tion, union, and re
ursion. With respe
t to query 
ontainment, CQs andDatalog span the spe
trum in terms of 
omputational 
omplexity. In [14℄ it isshown that CQ 
ontainment is equivalent to CQ evaluation (NP-
omplete).(For some extensions, see [18{21℄.) On the other hand, it is shown in [22℄ that
ontainment of Datalog queries is unde
idable; the proof is by redu
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the 
ontainment problem for 
ontext-free grammars.The most powerful query-
ontainment results for Datalog are given in [23{25℄.In [23℄ it is pointed out that tree-automata te
hniques 
an be used to provethe de
idability of query 
ontainment for monadi
 Datalog, where rule headsuse a single variable (whi
h means that intermediate result of the query, aswell as the �nal one, are sets of data elements). The other results apply tothe relationship between Datalog and non-re
ursive Datalog (non-re
ursiveDatalog queries are in essen
e unions of 
onjun
tive queries). In [24℄ it isshown that 
he
king 
ontainment of nonre
ursive Datalog queries in Datalogqueries is de
idable in exponential time. In [25℄ (see also [21℄) it is shown, usingtree-automata te
hniques, that 
ontainment of Datalog queries in nonre
ursiveDatalog queries is de
idable in triply exponential time. When the non-re
ursivequery is represented, via unfolding, as a union of CQs, the 
omplexity is doublyexponential, rather than triple exponential. (These bounds are known to beoptimal, see [26,4℄ for studies of spe
ial 
ases and some extensions.)In this paper we address the problem of query 
ontainment in the 
ontextof semistru
tured data models. Our goal is to 
apture the essential featuresfound in databases, both traditional and semistru
tured, as well as knowledgebases in semanti
 networks, 
on
eptual graphs, and des
ription logi
s. Forthis purpose, we 
on
eive a database as an edge-labeled graph, where nodesrepresent obje
ts, and a labeled edge between two nodes represents the fa
tthat the binary relation denoted by the label holds for the obje
ts. This model
aptures data expressed using XML-like languages [27,28℄ and is a

epted asa standard model for semistru
tured data [29,30℄.In this framework, a basi
 querying me
hanism is the one of regular pathqueries (RPQ) [29,31,32℄, whi
h ask for all pairs of obje
ts that are 
onne
tedby a path 
onforming to a regular expression. Regular path queries are ex-tremely useful for expressing 
omplex navigations in a graph. In parti
ular,union and transitive 
losure are 
ru
ial when we do not have a 
omplete knowl-edge of the stru
ture of the database. In our regular path queries, we in
ludealso the inverse operator, whi
h enables us to navigate edges ba
kwards [29,7℄,for example, from a 
hild to its parent. We denote these queries by 2RPQs(two-way regular path queries). Using 2RPQs as the basi
 querying me
ha-nism, one 
an 
onstru
t 
onjun
tive 2-way regular path queries (C2RPQs),whi
h enables us to perform joins and proje
tions over 2RPQs. C2RPQs arethe basi
 building blo
ks for querying semistru
tured data [33,13,31℄. The
ontainment problem for C2RPQs (a
tually for unions of su
h C2RPQs) wasstudied in [34℄ (see also [33℄), where it was shown, using two-way automata,to be EXPSPACE-
omplete.The notable fa
t about the de
idability of 
ontainment for C2RPQs is thatC2RPQs are a fragment of re
ursive Datalog, due to the transitive 
losure op-3



erator. Thus, the result in [33,34℄ is the �rst de
idability result for 
ontainmentof non-monadi
 re
ursive Datalog queries. The fa
t that automata-theoreti
te
hniques are used both in [25℄ and in [34℄ suggests that perhaps the two de-
idability results 
an be 
ombined. We show here that this is indeed the 
aseby proving the de
idability of the 
ontainment of Datalog queries in unionof C2RPQs (whi
h, implies the known de
idability result for 
ontainment ofunion of C2RPQs). The automata-theoreti
 te
hniques 
ombine tree automatawith two-way automata; we use alternating two-way tree automata [35℄. Theupper bound is doubly exponential time, just as in [25℄, whi
h we show to beoptimal.The rest of the paper is organized as follows. In Se
tion 2 we present the datamodel and query languages for semistru
tured data we adopt in this paper. InSe
tion 3 we provide some preliminary results on the 
hara
terization of 
on-tainment of Datalog queries in unions of 
onjun
tive queries. In Se
tion 4 weintrodu
e two-way alternating tree automata, whi
h are used in Se
tion 5 toestablish the upper bound for 
ontainment of Datalog in unions of C2RPQs.In Se
tion 6 we show a mat
hing lower bound. Finally, in Se
tion 7 we 
on-
lude the paper by dis
ussing the impa
t of our results on view-based querypro
essing.2 Databases and QueriesWe 
onsider a semistru
tured database (DB) G as an edge-labeled graph (D; E),where D is the set of nodes, and E is the set of edges labeled with elements ofan alphabet �. A node represents an obje
t, and an edge between nodes d1and d2 labeled e, denoted e(d1; d2), represents the fa
t that the binary relatione holds for the pair (d1; d2).The basi
 querying me
hanism on a DB is that of regular path queries (RPQs).An RPQ E is expressed as a regular expression or a �nite automaton, and
omputes the set of pairs of nodes of the DB 
onne
ted by a path that 
onformsto the regular language L(E) de�ned by E. We 
onsider unions of 
onjun
tive2-way regular path queries [34℄, whi
h extend regular path queries with thepossibility to traverse edges ba
kward, with 
onjun
tions and variables, andwith union.Formally, Let � be a set of binary relation symbols, and let �� = � [ ��,with �� = fe� j e 2 �g. Intuitively, e� denotes the inverse of the binaryrelation e. If r 2 ��, then we use r� to mean the inverse of the relation r,i.e., if r is e, then r� is e�, and if r is e�, then r� is e.2-way regular path queries (2RPQs) are expressed by means of regular expres-4



sions or �nite word automata over ��. Thus, in 
ontrast with RPQs, 2RPQsmay use also the inverse e� of e, for ea
h e 2 �. When evaluated over aDB G, a 2RPQ E 
omputes the set E(G) of pairs of nodes (d0; dq) su
h thatr1(d0; d1); r2(d1; d2); : : : ; rq(dq�1; dq) hold in G and r1r2 � � � rq is in the regu-lar language L(E) de�ned by E. Observe that, when q = 0, we have thatr1r2 � � � rq = " and d0 = dq.Conjun
tive 2-way regular path queries (C2RPQs) are 
onjun
tions of atoms,where ea
h atom spe
i�es that one 2RPQ holds between two variables. Morepre
isely a C2RPQ 
 of arity n is a formula of the formQ(x1; : : : ; xn)  E1(y1; y01); : : : ; Em(ym; y0m)where x1; : : : ; xn; y1; y01 : : : ; ym; y0m range over a set fu1; :::; ukg of variables andE1; : : : ; Em are 2RPQs. The variables x1; : : : ; xn are 
alled distinguished vari-ables. The answer set 
(G) to a C2RPQ 
 over a DB G = (D; E) is the setof tuples (d1; : : : ; dn) of nodes of G su
h that there is a total mapping � fromfu1; : : : ; ukg to D with �(xi) = di for every distinguished variable xi of 
, and(�(y); �(y0)) 2 E(G) for every 
onjun
t E(y; y0) in 
. When the arity of 
 is0, then it is viewed as a Boolean query; the answer set is either the empty set(
orresponding to false) or the set 
ontaining the 0-ary tuples (
orrespondingto true).Finally, a union of 
onjun
tive 2-way regular path queries of arity n has theform [i
i, where ea
h 
i is a C2RPQ of arity n. The answer set to a unionof C2RPQs � = [i
i over a DB G is simply �(G) = [i
i(G). Noti
e thattraditional 
onjun
tive queries (resp., unions of 
onjun
tive queries) (
f. [15℄)are just a spe
ial 
ase of C2RPQs (resp., unions of C2RPQs) in whi
h ea
h2RPQ in an atom is simply a relation symbol.A Datalog program 
onsists of a set of Horn rules. A (Horn) rule is a �rst-ordermaterial impli
ation between a body and a head, where the head 
onsists of asingle atom, and the body 
onsists of a 
onjun
tion of atoms. Ea
h atom is aformula of the form R(x1; : : : ; xn) where R is a predi
ate symbol and x1; : : : ; xnare variables. All variables are impli
itly universally quanti�ed outside therule, and all variables appearing in the head are among the variables in thebody. The predi
ates that o

ur in heads of rules are 
alled intensional (IDB)predi
ates. The rest of the predi
ates are 
alled extensional (EDB) predi
ates.Here we 
onsider Datalog programs that are evaluated over a semistru
tureddatabase. Hen
e, when not expli
itly noted otherwise, we assume that theEDB predi
ates are among the predi
ates in �, whi
h are all binary. Observe,however, that IDB predi
ates, whi
h are not in �, may be of arbitrary arity.We de�ne now the answer set to a Datalog program � with goal predi
ate5



Q over a DB G. Let D be a 
olle
tion of fa
ts about the extensional andintensional predi
ates of �. Then, the fa
ts that 
an be dedu
ed from D byapplying a ruleR(x1; : : : ; xn)  R1(y1); : : : ; Rm(ym)of � are all fa
ts of the form R(d1; : : : ; dn) su
h that d1; : : : ; dn are nodes of �and there is a substitution of the variables in the body of the rule with nodesof � that substitutes xi with di and su
h that, after the substitution, all atomsof the body are among the fa
ts in D. We denote by ��(D) the 
olle
tion offa
ts obtained as the union of D with all fa
ts that 
an be dedu
ed from Dby applying one of the rules of �. For a DB G, letD0 = GDi+1 = ��(Di)Then, for an IDB predi
ate Q of �, the answer set Q1� (G) to the Datalogprogram � with goal predi
ate Q over the DB G is the 
olle
tion of fa
tsabout Q in Dh, where h is the least number su
h that Dh = Dh+1. Note thatsu
h an h always exists [15℄.We say that a Datalog program � with goal predi
ate Q is 
ontained in aunion of C2RPQs � if Q1� (G) � �(G) for every database G.3 Containment of Datalog in Unions of Conjun
tive QueriesA 
ontainment mapping from a 
onjun
tive query  to a 
onjun
tive query' is a renaming of variables subje
t to the following 
onstraints: (a) everydistinguished variable must map to itself, and (b) after renaming, every literalin  must be among the literals of '. It is well known that 
ontainment of
onjun
tive queries 
an be 
hara
terized in terms of 
ontainment mappings(
f. [15℄). In fa
t this 
hara
terization has been extended in [19℄ to unions of
onjun
tive queries, and holds also for in�nite unions.Theorem 1 ([19℄) Let � = [i'i and 	 = [i i be (possibly in�nite) unionsof 
onjun
tive queries. Then � is 
ontained in 	 (i.e., �(G) � 	(G) for everydatabase G) if and only if for ea
h 'i there is a  j su
h that 'i is 
ontainedin  j, i.e., there is a 
ontainment mapping from  j to 'i.As for 
ontainment of Datalog in (unions) of 
onjun
tive queries, it is known(
f. [36,37℄) that the relation de�ned by an IDB predi
ate Q in a Datalog6



program �, i.e., Q1� (G), 
an be de�ned by a possibly in�nite union of 
on-jun
tive queries. That is, for ea
h IDB predi
ate Q there is an in�nite se-quen
e '0; '1; : : : of 
onjun
tive queries su
h that, for every database G, wehave Q1� (G) = S1i=0 'i(G). The 'i's are 
alled the expansions of Q. In [25℄, ex-pansions of a Datalog program � are des
ribed in terms of so-
alled expansiontrees, whi
h are �nite trees in whi
h ea
h node is labeled with an instan
e ofa rule of �. We 
all the head and the body of a node respe
tively the headand the body of the rule labeling the node. In an expansion tree for an IDBpredi
ate Q, the root is labeled by a rule whose head is a Q-atom. If a nodeg is labeled by a rule instan
eR(t)  R1(t1); : : : ; Rm(tm)where the IDB atoms in the body of the rule are Ri1(ti1); : : : ; Ri`(ti`), then ghas 
hildren g1; : : : ; g` labeled with rule instan
es whose heads are respe
tivelythe atoms Ri1(ti1); : : : ; Ri`(ti`). In parti
ular, if all atoms in the body of g areEDB atoms, then g must be a leaf. The query 
orresponding to an expansiontree is the 
onjun
tion of all EDB atoms in the nodes of the tree, with thevariables in the head of the root as the distinguished variables. Thus, we 
anview an expansion tree � as a 
onjun
tive query, and extend, in the obviousway, the notion of 
ontainment mapping also to mappings from a 
onjun
tivequery to an expansion tree. Let trees(Q;�) denote the set of expansion treesfor an IDB predi
ate Q in �. (Note that trees(Q;�) is, in general, an in�niteset.) Then for every database G, we haveQ1� (G) = [�2trees(Q;�) �(G)It follows that � is 
ontained in a 
onjun
tive query ' if there is a 
ontainmentmapping from ' to ea
h expansion tree � in trees(Q;�).Unfortunately, the number of variables, and hen
e the number of node labelsin expansion trees is not bounded, and thus expansion trees are not dire
tlysuited for an automata-theoreti
 approa
h to 
ontainment. In [25℄, the notionof proof tree is introdu
ed, with the idea of des
ribing expansion trees usinga �nite number of labels. The number of labels is bound by bounding the setof variables that 
an o

ur in labels of nodes in the tree. If r is a rule of aDatalog program �, then let num var(r) be the number of variables o

urringin IDB atoms in r (head or body). Let num var(�) be twi
e the maximum ofnum var(r) for all rules r in �. Let var(�) be the set fx1; : : : ; xnum var(�)g. Aproof tree for � is simply an expansion tree for � all of whose variables arefrom var(�). We denote the set of proof trees for a predi
ate Q of a Datalogprogram � by p trees(Q;�). 7



A proof tree represents an expansion tree where variables are re-used. In otherwords, the same variable is used to represent a set of distin
t variables in theexpansion tree. Intuitively, to re
onstru
t an expansion tree for a given prooftree, we need to distinguish among o

urren
es of variables. Let g1 and g2 benodes in a proof tree � , with a lowest 
ommon an
estor g0, and let x1 and x2be o

urren
es, in g1 and g2, respe
tively, of a variable x. We say that x1 andx2 are 
onne
ted in � if the head of every node, ex
ept perhaps for g0, on thesimple path 
onne
ting g1 and g2 has an o

urren
e of x. (Noti
e that thismeans that x also o

urs in the body of g0.) We say that an o

urren
e x of avariable x in � is a distinguished o

urren
e if it is 
onne
ted to an o

urren
eof x in the head of the root of � .We want to de�ne 
ontainment mappings from 
onjun
tive queries to prooftrees su
h that there is a 
ontainment mapping from a 
onjun
tive query to aproof tree if and only if there is a 
ontainment mapping from the 
onjun
tivequery to the expansion 
orresponding to the proof tree. To do so, we needto for
e a variable in the 
onjun
tive query to map to a unique variable inthe expansion 
orresponding to the proof tree. A strong 
ontainment mappingfrom a 
onjun
tive query ' to a proof tree � is a 
ontainment mapping h from' to � with the following properties:� h maps distinguished o

urren
es in ' to distinguished o

urren
es in � ,and� if x1 and x2 are two o

urren
es of a variable x in ', then the o

urren
esh(x1) and h(x2) in � are 
onne
ted.The following 
hara
terization of 
ontainment of a union of 
onjun
tive queriesin a Datalog program was shown in [25℄.Theorem 2 ([25℄) Let � be a Datalog program with goal predi
ate Q, andlet � = [i'i be a (possibly in�nite) union of 
onjun
tive queries over EDBpredi
ates. Then � is 
ontained in � if and only if for every proof tree � 2p trees(Q;�) there is a strong 
ontainment mapping from some 'i to � .The above theorem is shown in [25℄ for �nite unions of 
onjun
tive queriesonly. However, it is easy to see that the proof 
arries through also for in�niteunions.Noti
e that, together with Theorem 1, Theorem 2 by itself does not pro-vide de
idability of 
ontainment of Datalog in (possibly in�nite) unions of
onjun
tive queries, sin
e one needs a method to 
he
k the existen
e of astrong 
ontainment mapping. Unde
idability of 
ontainment between Datalogqueries [22℄ shows that su
h a method will not exist in general for (in�nite)unions that are expansions of Datalog programs. However, in [25℄ the above re-sult is exploited to show that 
ontainment of a Datalog query in a �nite unionof 
onjun
tive queries is in 2EXPTIME (and in fa
t 2EXPTIME-
omplete).8



To exploit Theorem 2 for 
ontainment of Datalog queries in union of C2RPQs,we need to 
hara
terize the problem in terms of 
ontainment between Datalogand (in�nite) unions of 
onjun
tive queries. An expansion of a C2RPQQ(x1; : : : ; xn)  E1(y1; y01); : : : ; Em(ym; y0m)is a CQ of the formQ(x1; : : : ; xn)  r11(y1; z11); r21(z11 ; z21); : : : ; rn11 (zn1�11 ; y01);...r1m(ym; z1m); r2m(z1m; z2m); : : : ; rnmm (znm�1m ; y0m)where, for ea
h i 2 f1; : : : ; mg, we have that ni � 0, that r1i � � � rnii 2 L(Ei),and that all variables zji are pairwise distin
t. Observe that, when ni = 0, wehave that r1i � � � rnii = ", and r1i (yi; z1i ); r2i (z1i ; z2i ); : : : ; rnii (zni�1i ; y0i) be
omessimply yi = y0i. Noti
e that, a C2RPQ has in general many expansions, andthat, due to transitive 
losure, the number of su
h expansions may be in�nite.The following lemma is an easy 
onsequen
e of Theorem 2 and of the semanti
sof unions of C2RPQs.Lemma 3 Let � be a Datalog program with goal predi
ate Q, and let � = [i
ibe a �nite union of C2RPQs. Then � is 
ontained in � if and only if for everyproof tree � 2 p trees(Q;�) there is a C2RPQ 
i of � and an expansion ' of
i su
h that there is a strong 
ontainment mapping from ' to � .In the following, we show how to 
he
k this 
ondition using tree automata.Unlike [25℄, where standard (one-way) nondeterministi
 tree automata areadopted, we need to resort to two-way alternating tree automata. This is dueto the presen
e of inverses of relations in 2RPQs, and due to the fa
t that in2RPQs (and hen
e in C2RPQs) 
on
atenation and transitive 
losure introdu
eimpli
it variables that need to be dealt with.4 Two-way Alternating Tree AutomataWe present the basi
 notions on automata used in the rest of the paper. Weassume familiarity with the standard notions of (one-way) word automata(1NFAs) [38℄ and (one-way) nondeterministi
 tree automata (1NTAs) [39℄,and 
on
entrate on two-way alternating tree automata (2ATAs).Trees are represented as pre�x 
losed �nite sets of words over N+ (the set of9



positive natural numbers). Formally, a tree T is a �nite subset of N+ , su
hthat if g�
 2 T , where g 2 N�+ and 
 2 N+ , then also g 2 T and if 
 > 1then also g�(
 � 1) 2 T . The elements of T are 
alled nodes, and for everyg 2 T , the nodes g�
 2 T , with 
 2 N+ , are the su

essors of g. By 
onventionwe take g�0 = g, and g�
�(�1) = g. By de�nition, the empty sequen
e " is amember of every tree, and is 
alled the root. Note that " � �1 is unde�ned.The bran
hing degree d(g) of a node g denotes the number of su

essors of g.If the bran
hing degree of all nodes of a tree is bounded by k, we say that thetree has bran
hing degree k. Given a �nite alphabet �, a �-labeled tree � isa pair (T; V ), where T is a tree and V : T ! � maps ea
h node of T to anelement of �. �-labeled trees are often referred to as trees, and if � = (T; V )is a (labeled) tree and g is a node of T , we use �(g) to denote V (g).Two-way alternating tree automata (2ATAs) [35,23℄, are a generalization ofstandard nondeterministi
 top-down tree automata (1NTAs) [40,41℄) withboth upward moves and with alternation. Let B(I) be the set of positiveBoolean formulae over I, built indu
tively by applying ^ and _ starting fromtrue, false, and elements of I. For a set J � I and a formula ' 2 B(I), we saythat J satis�es ' if and only if, assigning true to the elements in J and false tothose in InJ , makes ' true. For a positive integer k, let [k℄ = f�1; 0; 1; : : : ; kg.A two-way alternating tree automaton (2ATA) over a �nite alphabet � run-ning over trees with bran
hing degree k, is a tuple A = (�; S; Æ; s0; F ), whereS is a �nite set of states, Æ : S � � ! B([k℄ � S) is the transition fun
tion,s0 2 S is the initial state, and F � S is the set of �nal states. The transitionfun
tion maps a state s 2 S and an input letter � 2 � to a positive Booleanformula ' over [k℄�S. Sin
e ' 
an be written in 
onjun
tive normal form, inthe following we view it as a set of 
onjun
tions. Intuitively, when the 2ATAperforms a transition, it nondeterministi
ally 
hooses one of the 
onjun
tionsin ', and then, for ea
h pair (
; s0) appearing in ' a new 
opy of the automatonstarts in state s0 and moves to the dire
tion suggested by 
.A run � of a 2ATA A over a labeled tree � = (T; V ) is a labeled tree (T�; V�)in whi
h every node is labeled by an element of T �S. A node f of T� labeledby (g; s) des
ribes a 
opy of A that is in the state s and reads the node g of� . The labels of adja
ent nodes have to satisfy the transition fun
tion of A.Formally, a run (T�; V�) is a (T � S)-labeled tree satisfying:(1) " 2 T� and V�(") = ("; s0).(2) Let f 2 T�, with V�(f) = (g; s) and Æ(s; V (g)) = '. Then there is a(possibly empty) set C = f(
1; s1); : : : ; (
n; sn)g � [k℄� S su
h that:� C satis�es ' and� for all i 2 f1; : : : ; ng, we have that f �i 2 T� , g�
i is de�ned, andV�(f �i) = (g�
i; si).A run � = (T�; Vnu) on a tree � is a

epting if, whenever a leaf of T� is labeled10



by (g; s), then s 2 F .A a

epts a labeled tree � if it has an a

epting run on � .The set of trees a

epted by A is denoted T (A). The nonemptiness problemfor tree automata 
onsists in de
iding, given a tree automaton A, whetherT (A) is nonempty.As shown in [23℄, 2ATAs 
an be 
onverted to 
omplementary 1NTAs withonly a single exponential blowup. Moreover, it is straightforward to see thatone 
an 
onstru
t a 2ATA of polynomial size a

epting the �nite union of thelanguages a

epted by n 2ATAs.Proposition 4 ([23℄) Given a 2ATA A over an alphabet �, there is a 1NTAA of size exponential in the size of A su
h that A a

epts a �-labeled tree �if and only if � is reje
ted by A.Proposition 5 Given n 2ATAs A1; : : : ;An over an alphabet �, there is a2ATA A[ of size linear in the sum of the sizes of A1; : : : ;An su
h thatT (A[) = T (A1) [ � � � [ T (An).We make also use of the following standard results for 1NTAs.Proposition 6 ([42℄) Given 1NTAs A1 and A2 over an alphabet �, there isa 1NTA A\ whose size is the produ
t of the sizes of A1 and A2 su
h thatT (A\) = T (A1) \ T (A2).Proposition 7 ([40,41℄) The nonemptiness problem for 1NTAs is de
idablein polynomial time.In fa
t, the nonemptiness problem for 1NTAs is de
idable in linear time,see [43,44℄5 Containment of Datalog in Unions of C2RPQsThe main feature of proof trees is the fa
t that the number of possible labelsis �nite; it is a
tually exponential in the size of �. Be
ause the set of labels is�nite, the set of proof trees p trees(Q;�), for an IDB predi
ate Q in a program�, 
an be des
ribed by a tree automaton.Theorem 8 ([25℄) Let � be a Datalog program with a goal predi
ate Q. Thenthere is a 1NTA Ap treesQ;� , whose size is exponential in the size of �, su
h thatT (Ap treesQ;� ) = p trees(Q;�).The automaton Ap treesQ;� = (�; I [ fa

eptg; IQ; Æ; fa

eptg), analogous to theone de�ned in [25℄, is as follows. 11



The state set is the set I of all IDB atoms with variables among var(�), plusan a

epting state. The start-state set IQ is the set of all atoms Q(s), wherethe variables of s are in var(�). The alphabet � is is the set R of instan
esof rules of � over var(�). The transition fun
tion Æ is 
onstru
ted as follows.Let % be the body of a rule instan
e in RR(t)  R1(t1); : : : ; Rm(tm)� If the IDB atoms in % are Ri1(ti1); : : : ; Ri`(ti`), then there is a transition 3h1; Ri1(ti1)i ^ � � � ^ h`; Ri`(ti`)i 2 Æ(R(t); (R(t) %))� If all atoms in % are EDB atoms, then there is a transitionh0; a

epti 2 Æ(R(t); (R(t) %))It is easy to see that the number of states and transitions in Ap treesQ;� is expo-nential in the size of �.We now show that strong 
ontainment of proof trees in a C2RPQ 
an be
he
ked by tree automata as well. Let � be a Datalog program with (binary)EDB predi
ates in � and with goal predi
ate Q, and let 
 be a C2RPQ over�� of the same arity as Q. We des
ribe the 
onstru
tion of a 2ATA A
Q;� thata

epts all proof trees � in p trees(Q;�) su
h that there is an expansion ' of
 and a strong 
ontainment mapping from ' to � .We view 
 as a set of atoms E(x; y), where E is a 1NFA E =(��; SE; sE; ÆE; FE), with sE 2 SE and FE � SE, and where, w.l.o.g., ÆEdoes not 
ontain "-transitions. Also, w.l.o.g., we assume that for two distin
tatoms E1(x1; y1) and E2(x2; y2), E1 and E2 are distin
t automata with dis-joint sets of states, i.e., SE1 \ SE2 = ;. For a 1NFA E, we use EFs to denotethe 1NFA identi
al to E, ex
ept that s 2 SE is the initial state of EFs , andF � SE is the set of �nal states of EFs . When F is a singleton, we may omitset bra
kets.Let V
 be the set of variables appearing in the C2RPQ 
, and V +
 = f�v1E; �v2E jE(x; y) 2 
g, i.e., for ea
h 1NFA E(x; y) 2 
, V +
 
ontains two spe
ial variables�v1E and �v2E. We denote with B the 
olle
tion of all sets � of atoms, su
h that� 
ontains, for ea
h atom E(x; y) 2 
, at most one atom EFs (x0; y0), for somes 2 SE and F � SE, with x0 either x or �v1E and y0 either y or �v2E. Noti
e thatthe size of B is exponential in the size of 
. Indeed, let k be the number ofatoms in 
 and letm be an upper bound on the number of states of ea
h 1NFAin 
. All possible variants of a 1NFA obtained by 
hanging the initial state3 For uniformity, we use the notation of 2ATAs to denote the transitions of 1NTAs.12



and/or �nal states are m � 2m. Hen
e, the number of possible sets of 1NFAs ofat most k elements is (m � 2m)k = 2O(m�k).The automaton A
Q;� is (�; S [ fa

eptg; SQ; Æ; fa

eptg).� The alphabet � is again the set R of instan
es of rules of � over var(�).� The state set S is the set I�B�2V
�var(�)�2V +
 �var(�). Re
all that I is theset of all IDB atoms with variables among var(�). The se
ond 
omponentrepresents the 
olle
tion of automata a

epting sequen
es of atoms that haveto be mapped to atoms in the tree � a

epted by A
Q;�, and the third andfourth 
omponents 
ontain the set of partial mappings respe
tively from V
and V +
 to var(�).� The start-state set SQ 
onsists of all tuples (Q(s); 
;M
;s; ;), where thevariables of s are in var(�) and M
;s is a mapping of the distinguishedvariables of 
 into the variables of s.The transition fun
tion Æ of A
Q;� is 
onstru
ted as follows. Let % be the bodyof a rule instan
e in RR(t) R1(t1); : : : ; Rm(tm)(1) There is an \atom mapping" transitionh0; (R(t); � 0;M;M 0+)i 2 Æ((R(t); �;M;M+); (R(t) %))if there is an EDB atom e(a; b) among R1(t1); : : : ; Rm(tm) and if � 0 
oin-
ides with �, ex
ept that one element EFs (x; y) in � is repla
ed in � 0 byEFs0 (x0; y), and one of the following holds:� s0 2 ÆE(s; e) and� if x 2 V
 (i.e., x is a variable of 
), M maps x to a, and M+ doesnot map �v1E, then x0 = �v1E and M 0+ =M+ [ f(�v1E; b)g;� if x = �v1E 2 V +
 (i.e., x is the �rst spe
ial variable for the 1NFA E)and (�v1E; a) 2 M+, then x0 = x = �v1E, and M 0+ = M+ n f(�v1E; a)g [f(�v1E; b)g;� s0 2 ÆE(I; e�) and� if x 2 V
 (i.e., x is a variable of 
), M maps x to b, and M+ doesnot map �v1E, then x0 = �v1E and M 0+ =M+ [ f(�v1E; a)g;� if x = �v1E 2 V +
 (i.e., x is the �rst spe
ial variable for the 1NFA E)and (�v1E; b) 2 M+, then x0 = x = �v1E, and M 0+ = M+ n f(�v1E; b)g [f(�v1E; a)g.Intuitively, an \atom mapping" transition maps the next atom read bysome 1NFA in � to some EDB atom in �, and modi�es M+ a

ordingly.Note that the variable x (either a variable of V
 or the spe
ial variable�v1E) must already be mapped (respe
tively byM orM+) to some variablein the 
urrent node of � . 13



(2) There is a \splitting" transitionh0; (R(t); � 0;M;M 0+)i ^ h0; (R(t); � 00;M;M 00+)i 2Æ((R(t); �;M;M+); (R(t) %))if the following hold:� M 0+ and M 00+ 
oin
ide with M+, ex
ept for the 
hanges des
ribed in thefollowing point;� � 
an be partitioned into �1, �2, and �3; moreover � 0 = �1 [ � 03 and� 00 = �2 [ � 003 , where � 03 and � 003 are sets of elements that 
onsist of oneelement for ea
h element EFs (x; y) in �3, obtained as follows: for somestate s0 of E and some variable a 2 var(�) appearing in R(t) %, oneof the following holds:� � 03 
ontains the element Es0s (x; �v2E), � 003 
ontains the elementEFs0 (�v1E; y), M 0+ (re-)maps �v2E to a, and M 00+ (re-)maps �v1E to a;� � 03 
ontains the element EFs0 (�v1E; y), � 003 
ontains the elementEs0s (x; �v2E), M 0+ (re-)maps �v1E to a, and M 00+ (re-)maps �v2E to a;� � 0 and � 00 
an share a variable in V
 only if this variable is in the domainof M . (Noti
e that two o

urren
es of a spe
ial variable in V +
 sharedby � 0 and � 00 are not related to ea
h other.)A \splitting" transition partitions the atoms in � into two parts. Thegoal is to enable the two parts to be manipulated separately. For example,one part may 
orrespond to those atoms that are intended to be \moved"together to an adja
ent node in a future transition, while the other partmay 
orrespond to those atoms that are meant to stay together in the 
ur-rent node for further pro
essing, e.g., by further splitting or by mappingto EDB atoms. During splitting, some atoms in � may be a
tually splitinto two subatoms. The mappings M and M+ have to \bind" togethervariables that are in 
ommon to the two 
onjun
ts of the transition.(3) There is a \downward moving" transitionhj; (Rij (tij); �;M;M+)i 2 Æ((R(t); �;M;M+); (R(t) %))if j 2 f1; : : : ; `g, where ` is the number of IDB atoms in % and Rij (tij) isthe j-th IDB atom, and if for all variables that o

ur in � and that arein the domain of either M or M+, their image is in tij .A \downward moving" transition moves to a su

essor node, and isintended to be applied whenever no next atom 
an be mapped and nofurther splitting is possible. Moving is possible only if variables that areboth in atoms still to be mapped (and thus in �) and have already beenmapped (and thus are in the domain of either M or M+) 
an be propa-gated through the head of the rule to whi
h the automaton moves.(4) There is an \upward moving" transitionh�1; (R0(t0); �;M;M+)i 2 Æ((R(t); �;M;M+); (R(t) %))14



if R0(t0) is the head of some rule instan
e and if for all variables thato

ur in � and that are in the domain of either M or M+, their image isin t.An \upward moving" transition is similar to a \downward moving"one, ex
ept that it moves to the prede
essor node. Noti
e that, afteran \upward moving" transition, the automaton will be able to performfurther moves (and hen
e to eventually a

ept) only if the head of therule instan
e in the prede
essor node is R0(t0).(5) There is an \equality 
he
king" transitionh0; (R(t); � 0;M;M+)i 2 Æ((R(t); �;M;M+); (R(t) %))if the following hold:� � 
an be partitioned into �0 and � 0;� for all atoms EFs (x; y) 2 �0 we have that� s 2 F ,� (x; a) and (y; a) are in M [ M+, for some variable a in % or t,i.e., both x and y are in the domain of M or of M+ and they aremapped to the same variable a;An \equality 
he
king" transition gets rid of those elements in � all ofwhose atoms have already been mapped to atoms in � . While doing so,it 
he
ks that M and M+ are 
ompatible with the equalities indu
ed bysu
h atoms.(6) There is a \mapping extending" transitionh0; (R(t); �;M 0;M+)i 2 Æ((R(t); �;M;M+); (R(t) %))if M 0 is a partial mapping that extends M .A \mapping extending" transition adds some variables to the mappingM . This may be ne
essary to be able to apply some other transition thatrequires 
ertain variables to appear in M .(7) There is a \�nal" transitionh0; a

epti 2 Æ((R(t); ;;M;M+); (R(t) %))A \�nal" transition moves to the a

epting state whenever there areno further atoms in � that have to be pro
essed.It is easy to see that the number of states and transitions inA
Q;� is exponentialin the size of � and 
. The following two basi
 lemmas establish the 
orre
tnessof the above 
onstru
tion.Lemma 9 Let � be a proof tree in p trees(Q;�). If there is an expansion 'of 
 and a strong 
ontainment mapping h from ' to � , then � is a

epted byA
Q;�. 15



Proof. We prove a

eptan
e by showing the existen
e of an a

epting run �of A
Q;�. We view the expansion ' of 
 as a set of sequen
es of atoms; for ea
hatom E(x; y) in the body of 
, ' 
ontains one sequen
e of atoms'E = r1(z0; z1); r2(z1; z2); : : : ; rn(zn�1; zn)with z0 = x, zn = y, and r1 � � � rn 2 L(E).Besides the a

epting run � we make use of a tree W , with the same set ofnodes as �, in whi
h ea
h node is labeled by a set of sequen
es of atoms of'. More pre
isely, for ea
h node f , ea
h w 2 W (f) is a (possibly empty)subsequen
e of some sequen
e 'E in ', representing those atoms in 'E that,when A
Q;� is at node f of the run, have not already been mapped to atomsin � . For the root " we have that W (") = '.Let f be a node of the run � with �(f) = (g; (R(t); �;M;M+)), whereg is a node of � and �(g) = (R(t)  %). We say that W (f) is
ompatible with � if it 
onsists of sequen
es of atoms, one sequen
ew = ru(zu�1; zu); ru+1(zu; zu+1); : : : ; rv(zv�1; zv) for ea
h atom EFs (x0; y0)in �, where w is a 
ontiguous subsequen
e of the sequen
e 'E =r1(z0; z1); r2(z1; z2); : : : ; rn(zn�1; zn) in ' 
orresponding to the atom E(x; y)in 
, and we have that� ru � � � rv 2 L(EFs );� u > 1 i� x0 = �v1E, and if u > 1 then (�v1E; h(zu�1)) 2M+;� v < n i� y0 = �v2E, and if v < n then (�v2E; h(zv)) 2M+;For ea
h atom EFs (x; y) in � for whi
h the 
orresponding sequen
e of atomsin W (f) is ru(zu�1; zu); : : : ; rv(zv�1; zv), we use #(x) to denote zu�1 and #(y)to denote zv. Noti
e that, if x 2 V
 , then #(x) denotes x itself. We say thatf is 
onne
ted, if for ea
h variable x appearing both in � and in the domainof M [M+, R(t)  % 
ontains an o

urren
e of a variable 
onne
ted to theo

urren
e h(#(x)). We say thatM+ is 
ompatible with �, if for ea
h EFs (x; y)in �, if x is in V
, then M+ does not map �v1E; similarly for y. We say that thepair (g; s), with g a node of � and s a state of A
Q;�, is a

epting (for A
Q;�and �) if there is an a

epting run � of A
Q;� on � and a node f of � su
h that�(f) = (g; s).We show that �(f) = (g; (R(t); �;M;M+)) is a

epting for A
Q;� and � , if thefollowing 
onditions hold:(1) M is 
onsistent with h and maps all distinguished variables of 
;(2) M+ is 
ompatible with �;(3) f is 
onne
ted;(4) W (f) is 
ompatible with �. 16



We pro
eed by indu
tion on S(f), where S(f) is the sum of the lengths of thesequen
es of atoms in W (f). We 
ount an equality atom as having length 1,and a sequen
e 
onsisting of n atoms di�erent from equalities as having lengthn+ 1. Below we 
onsider the 
ase where 
onditions (1) to (4) are satis�ed fora node f . If they are not, the property we are proving trivially holds.� Base 
ase: S(f) = 0. Then W (f) is empty. So is �, and A
Q;� 
an performa \�nal" transition to the a

epting state. Hen
e �(f) is a

epting.� Indu
tive 
ase 1: Assume there is a nonempty sequen
e w =ru(zu�1; zu); ru+1(zu; zu+1); : : : ; rv(zv�1; zv) in W (f) with ru � � � rv 2 L(EFs )for some EFs (x; y) in �, su
h that the body % of the rule of the node g ofthe proof tree 
ontains an atom ru(a; b) and we have that h(zu�1) = a andh(zu) = b. In other words, h maps the �rst atom in w to an atom in %. We
onsider the 
ase where ru = e, for some e 2 � and where x 2 V
 (i.e.,u = 1 and x = z0 is a variable of 
). The other 
ases 
an be dealt withanalogously.Sin
e ru � � � rv 2 L(EFs ), there must be some s0 2 ÆE(s; e) su
h thatru+1 � � � rv 2 L(EFs0 ). Sin
e M+ is 
ompatible with � it does not map �v1E.Assume that x is in the domain of M . Sin
e M is 
onsistent with h itmaps x to a. Then A
Q;� 
an perform an \atom mapping" transitionh0; (R(t); � 0;M;M 0+)i 2 Æ((R(t); �;M;M+); (R(t) %))where � 0 
oin
ides with �, ex
ept that the element EFs (x; y) in � is repla
edin � 0 by EFs0 (�v1E; y), and M 0+ =M+ [ f(�v1E; b)g.Hen
e, in the run � there is a unique su

essor f �1 of f with �(f �1) =(g; (R(t); � 0;M 0;M 0+)). For W we have that W (f �1) 
oin
ides with W (f),ex
ept that the sequen
e w in W (f) is repla
ed in W (f �1) by w0 =ru+1(zu; zu+1); : : : ; rv(zv�1; zv). Observe that f �1 satis�es 
onditions (1)to (4) and that S(f �1) = S(f) � 1, sin
e we have mapped one atom ofW (f). Thus, by indu
tive hypothesis, �(f �1) is a

epting, and hen
e also�(f).If x is not in the domain of M , then A
Q;� 
an �rst perform a \mappingextending" transitionh0; (R(t); �;M 0;M+)i 2 Æ((R(t); �;M;M+); (R(t) %))su
h that M 0 = M [ f(x; a)g, and then perform the transition above. Inthis 
ase, M 0 is still 
onsistent with h and the resulting node in the run is
onne
ted, sin
e x is mapped to a variable in R(t) %.� Indu
tive 
ase 2: Assume there is a sequen
e w =ru(zu�1; zu); : : : ; rv(zv�1; zv) in W (f) that 
ollapses to the equalityzu�1 = zv, being ru � � � rv = ", and su
h that h maps zu�1 and zvto o

urren
es of a variable both 
onne
ted to the same variable a inR(t) %.We 
onsider only the 
ase where zu�1 is a variable x in V
 and and zv is17



a variable y in V
. The other 
ases are analogous. For ea
h EFs (x; y) in �
orresponding to w, we have that s 2 F .Assume that both x and y are in the domain ofM . Sin
e M is 
onsistentwith h, it maps both x and y to a. Thus A
Q;� 
an perform the \equality
he
king" transitionh0; (R(t); � 0;M;M+)i 2 Æ((R(t); �;M;M+); (R(t) %))Hen
e, in the run � there is a unique su

essor f �1 of f with �(f �1) =(g; (R(t); � 0;M;M+)). For W we have that W (f �1) 
oin
ides with W (f) nfwg. Observe that f �1 satis�es 
onditions (1) to (4) and that S(f �1) =S(f)�1. Thus, by indu
tive hypothesis, �(f �1) is a

epting, and hen
e also�(f).If x or y is not in the domain of M , then A
Q;� 
an �rst perform a\mapping extending" transition, as in the previous 
ase.� Indu
tive 
ase 3: Consider some j 2 f�1; 1; : : : ; `g, where ` is the number ofIDB atoms in %. LetW1 be the subset ofW (f) 
onsisting of those sequen
esw of atoms su
h that h maps both the �rst and the last atom of w to atomsin the j-th subtree of g, where we take the �1-th subtree of g to be �without the tree rooted at g. Let W2 be the subset of W (f) 
onsisting ofthose sequen
es w of atoms su
h that h maps neither the �rst nor the lastatom of w to atoms in the j-th subtree of g. Let W3 be the remainingsequen
es of atoms in W (f). Finally, let both W1 and W2 be di�erent fromW (f).We have a 
orresponding partition of � into �1, �2, and �3. For ea
h se-quen
e w = ru(zu�1; zu); : : : ; rv(zv�1; zv) inW3 
orresponding to an elementEFs (x; y) in �3, sin
e ru(zu�1; zu) is mapped to an atom in the j-th subtreeof g, and rv(zv�1; zv) is mapped elsewhere, there must be some intermedi-ate variable zi in the sequen
e that is mapped by h to an o

urren
e of avariable 
onne
ted to a variable a in R(t)  %. (The 
ase where the lastatom is mapped to the j-subtree is analogous.) Hen
e there must be a states0 of E su
h that ru � � � ri 2 L(Es0s ) and ri+1 � � � rv 2 L(EFs0 ).Let � 03 be obtained from �3 by repla
ing ea
h atom EFs (x; y) with one ofEs0s (x; �v2) or EFs0 (�v1E; y), depending on whether the �rst or the last atom ofthe 
orresponding sequen
e in W3 is mapped to the j-th subtree. Let � 003 bede�ned the other way round. Finally, let � 0 = �1 [ � 03 and � 00 = �2 [ � 003 .Assume that all variables of V
 shared by � 0 and � 00 are already in thedomain of M . Thus A
Q;� 
an perform the \splitting" transitionh0; (R(t); � 0;M;M 0+)i ^ h0; (R(t); � 00;M;M 00+)i 2Æ((R(t); �;M;M+); (R(t) %))with M 0+ and M 00+ de�ned as required.Hen
e, in the run � there are two su

essors f �1 and f �2 of f with�(f �1) = (g; (R(t); � 0;M;M 0+)) and �(f �1) = (g; (R(t); � 00;M;M 00+)). For18



W we have that W (f �1) 
onsists of W1 union the set of subsequen
es of W3
orresponding to the elements in � 03. Analogously for W (f �2).Observe that f �1 and f �2 satisfy 
onditions (1) to (4) above, and thatboth S(f �1) and S(f �2) are stri
tly smaller than S(f), sin
e W1 and W2 areby assumption both di�erent from W (f). Thus, by indu
tive hypothesis,�(f �1) and �(f �2) are both a

epting, and hen
e also �(f).If some variable x in V
 is shared by � 0 and � 00 but is not already in thedomain ofM , thenA
Q;� 
an �rst perform a \mapping extending" transition,by adding (x; h(x)) to M . Observe that, sin
e x in is shared by � 0 and � 00,one o

urren
e of x must be mapped by h in the j-th subtree, and onesomewhere else. Hen
e, sin
e h is a strong 
ontainment mapping, the twoo

urren
es of h(x) must be 
onne
ted, and so also R(t) % must 
ontaina 
onne
ted o

urren
e of h(x). Thus the node in the run resulting from the\mapping extending" transition is also 
onne
ted.� Indu
tive 
ase 4: When the 
onditions for the appli
ation of the base 
aseand the indu
tive 
ases 1 to 3 do not hold, then W (f) is still not emptybut we 
annot progress with the mapping on the 
urrent node g. Sin
e noneof the above 
ases apply it must be that for all variables x in �, #(x) ismapped by h to a variable in the j-th subtree of g, for some j. Sin
e f is
onne
ted, all variables that appear both in � and in the domain ofM [M+must be mapped by h to o

urren
e of variables 
onne
ted to a variable inR(t) %. Sin
e h is a strong 
ontainment mapping and all these variablesare mapped in the j-th subtree, if follows that they are 
onne
ted throughvariables of the j-th IDB atom in % (respe
tively, the head R(t), if j = �1).Thus A
Q;� 
an perform either a \downward moving" transitionhj; (Rij (tij); �;M;M+)i 2 Æ((R(t); �;M;M+); (R(t) %))or an \upward moving" transitionh�1; (R0(t0); �;M;M+)i 2 Æ((R(t); �;M;M+); (R(t) %))Hen
e, in the run � there is a unique su

essor f �1 of f with �(f �1) =(g�j; (Rij (tij); �;M;M+)) (resp., �(f �1) = (g�(�1); (R0(t0); �;M;M+))). ForW we have that W (f �1) 
oin
ides with W (f). f �1 satis�es 
onditions (1)to (4). Moreover, it is easy to see that one 
an perform transitions only a�nite number of times sin
e it is not possible that h requires to pass twi
ethrough the same node g of � . After su
h transitions, one of the 
ases aboveapplies. Hen
e, by indu
tive hypothesis, �(f) is a

epting.Finally, we observe that 
onditions (1), to (4) are trivially satis�ed at the root" of � and W . The 
laim follows.Lemma 10 Let � be a proof tree in p trees(Q;�). If � is a

epted by A
Q;�,then there is an expansion ' of 
 and a strong 
ontainment mapping from 'to � . 19



Proof. We 
onstru
t from an a

epting run � of A
Q;� an expansion ' and astrong 
ontainment mapping from ' to � . We pro
eed by bottom-up indu
tionon the run, making use of a tree W analogous to the one used in the proof ofLemma 9, and a tree h with the same set of nodes as � and W , and su
h thath(f) is a strong 
ontainment mapping from the atoms in W (f) to atoms in � .In the following, let f be a node of � with �(f) = (g; (R(t); �;M;M+)) and�(g) = (R(t) %).We re
all the de�nition of #(x), of 
onne
ted node of a run, and of a

eptingpair (g; s). For ea
h atom EFs (x; y) in � for whi
h the 
orresponding sequen
eof atoms in W (f) is ru(zu�1; zu); : : : ; rv(zv�1; zv), we use #(x) to denote zu�1and #(y) to denote zv. We say that f is 
onne
ted, if for ea
h variable xappearing both in � and in the domain of M [M+, R(t)  % 
ontains ano

urren
e of a variable 
onne
ted to the o

urren
e h(#(x)). We say that thepair (g; s), with g a node of � and s a state of A
Q;�, is a

epting (for A
Q;�and �) if there is an a

epting run � of A
Q;� on � and a node f of � su
h that�(f) = (g; s).We further say that M+ is 
onsistent with h(f), if for ea
h variable �viE in thedomain of M+ we have that M+ maps �viE to h(f)(#(�viE)).We will indu
tively 
onstru
t W and h su
h that, for ea
h node f of � (andhen
e of h, and W ), su
h that �(f) is a

epting, we have that M and M+ are
onsistent with h(f) and that f is 
onne
ted.� Base 
ase (\�nal" transition): If there is a \�nal" transition from a node fto a node f �1 of � that is a leaf of the run labeled with the a

epting state,then � = ;. Then W (f) is empty and so is h(f). Hen
e, trivially, h(f) isa strong 
ontainment mapping from W (f) to � , M and M+ are 
onsistentwith h(f), and f is 
onne
ted.� Indu
tive 
ase 1 (\atom mapping" transition): If there is an \atom map-ping" transition from a node f to a node f �1 of �, with �(f �1) =(g; (R(t); � 0;M;M 0+)) a

epting, then, by indu
tive hypothesis,W (f �1) 
on-sists of one sequen
e of atoms for ea
h element EFs (x; y) of � 0, h(f �1) is astrong 
ontainment mapping from W (f �1) to atoms in � , M and M 0+ are
onsistent with h(f �1), and f is 
onne
ted.We have that � 
oin
ides with � 0, ex
ept that one element Efs (x; y) in �is repla
ed in � 0 by EFs0 (x0; y). We 
onsider only the 
ase where there is anEDB atom e(a; b) among the atoms in % su
h that s0 2 ÆE(s; e), and x 2 V
 .The other 
ases are similar. Then W (f) is equal to W (f �1), ex
ept that thesequen
e r1(#(x0); x1) � � � rn(xn�1; #(y)) of atoms 
orresponding to EFs0 (x0; y)is repla
ed in W (f) by e(#(x); #(x0)); r1(#(x0); x1) � � � rn(xn�1; #(y)) 
orre-sponding to EFs (x; y).We extend h(f �1) to h(f) by mapping the 
urrent o

urren
e of #(x) toa. Observe that, if there are other o

urren
es of #(x) in h(f �1) they are20



mapped to a as well sin
e M is 
onsistent with h(f �1) and f �1 is 
onne
ted.Moreover, M+ =M 0+ n f(�v1E; b)g. Hen
e, h(f) is a strong 
ontainment map-ping from W (f) to atoms in � and M and M+ are 
onsistent with h(f).Moreover sin
e the transition stays in the same node and #(x) is mappedto a variable in %, we have that f is 
onne
ted.� Indu
tive 
ase 2 (\splitting" transition): If there is a \splitting" transitionfrom a node f to nodes f �1 and f �2 of � with �(f �1) = (g; (R(t); � 0;M;M 0+))and �(f �2) = (g; (R(t); � 00;M;M 00+)) a

epting, then, by indu
tive hypothe-sis, W (f �1) 
onsists of one sequen
e of atoms for ea
h element EFs (x; y) of� 0, h(f �1) is a strong 
ontainment mapping from W (f �1) to atoms in � , Mand M 0+ are 
onsistent with h(f �1), and f �1 is 
onne
ted; similarly for f �2.We have that � 
oin
ides with � 0 [ � 00, ex
ept for elements Efs (x; y)in � that are repla
ed in � 0 by Es0s (x; �v2E) and in � 00 by EFs0 (�v1E; y). (The
ase where Es0s (x; �v2E) is in � 00 and EFs0 (�v1E; y) is in � 00 is analogous.)Then W (f) is equal to W (f �1) [ W (f �2), ex
ept that, for ea
h su
hEfs (x; y) we have a sequen
e w(zu�1; zi�1); w(zi�1; zv), where w(zu�1; zi�1) =ru(zu�1; zu); : : : ; ri�1(zi�2; zi�1) is the sequen
e of atoms in W (f �1) 
orre-sponding to Es0s (x; �v2E) and w(zi�1; zv) = ri(zi�1; zi); : : : ; rv(zv�1; zv) is thesequen
e in W (f �2) 
orresponding to EFs0 (varv1E; y).We take h(f) = h(f �1) [ h(f �2). Observe that, sin
e h(f �1) and h(f �2)are both 
ompatible withM and respe
tively 
ompatible withM 0+ andM 00+,both o

urren
es of zi�1 in w(zu�1; zi�1) and in w(zi�1; zv) are mapped tothe same variable of %. Hen
e, h(f) is a strong 
ontainment mapping fromW (f) to atoms in � and M and M+ are 
onsistent with h(f). Moreover,sin
e both 
onjun
ts of the transition stay in the same node and zi�1 ismapped to a variable in %, f is 
onne
ted.� Indu
tive 
ase 3 (\moving" transition): If there is a \downward mov-ing" (resp., \upward moving") transition from a node f to a nodef �1 of �, with �(f �1) = (g�j; (Rij (tij); �;M;M+)) (resp., �(f �1) =(g�(�1); (R0(t0); �;M;M+))) a

epting, then, by indu
tive hypothesis,W (f �1) 
onsists of one sequen
e of atoms for ea
h element EFs (x; y) of �,h(f �1) is a strong 
ontainment mapping fromW (f �1) to atoms in � ,M andM+ are 
onsistent with h(f �1), and f �1 is 
onne
ted.We take W (f) = W (f �1) and h(f) = h(f �1). Trivially h(f �1) is a strong
ontainment mapping from W (f) to atoms in � and M and M+ are 
onsis-tent with h(f). Moreover, sin
e all variables that o

ur in � and that are inthe domain of M [M+ have their image in tij (resp., p0), f is 
onne
ted.� Indu
tive 
ase 4 (\equality 
he
king" transition): If there is an \equality
he
king" transition from a node f to a node f �1 of �, with �(f �1) =(g; (R(t); � 0;M;M+)) a

epting, then, by indu
tive hypothesis,W (f �1) 
on-sists of one sequen
e of atoms for ea
h element EFs (x; y) of �, h(f �1) is astrong 
ontainment mapping from W (f �1) to atoms in � , M and M+ are
onsistent with h(f �1), and f �1 is 
onne
ted.For ea
h atom EFs (x; y) in �0 we have that s 2 F and (x; a) and (y; a) areinM [M+, for some variable a in R(t) %. Then W (f) extends W (f �1) by21



adding an equality atom #(x) = #(y), and h(f) extends h(f �1) by mappingthe o

urren
e of #(x) and of #(y) to a. Hen
e, h(f) is a strong 
ontainmentmapping fromW (f) to atoms in � andM andM+ are 
onsistent with h(f).Moreover sin
e the transition stays in the same node and #(x) and #(y) aremapped to a variable in R(t) %, we have that f is 
onne
ted.� Indu
tive 
ase 5 (\mapping extending" transition): If there is a \mappingextending" transition from a node f to a node f �1 of �, with �(f �1) =(g; (R(t); �;M 0;M+)) a

epting, then, by indu
tive hypothesis,W (f �1) 
on-sists of one sequen
e of atoms for ea
h element EFs (x; y) of �, h(f �1) is astrong 
ontainment mapping from W (f �1) to atoms in � , M and M+ are
onsistent with h(f �1), and f �1 is 
onne
ted.We take W (f) = W (f �1) and h(f) = h(f �1). Trivially h(f �1) is a strong
ontainment mapping from W (f) to atoms in � and M and M+ are 
onsis-tent with h(f). Moreover, f is trivially 
onne
ted sin
e the transition staysin the same node, � remains the same, and M is smaller than M 0.Sin
e in the initial state of A
Q;� we have that � = 
, we have ' = W (") isan expansion of 
, and h = h(") is a strong 
ontainment mapping from ' to� . The 
laim follows.Theorem 11 Let � be a Datalog program with binary EDB predi
ates in �and with goal predi
ate Q, and let � = [i
i be a �nite union of C2RPQs 
iover ��. Then � is 
ontained in � if and only ifT (Ap treesQ;� ) � Si T (A
iQ;�)Proof. By Lemma 3, � is 
ontained in � if and only if for every proof tree� 2 p trees(Q;�) there is a 
i and an expansion ' of 
i su
h that there isa strong 
ontainment mapping from ' to � . By Theorem 8 and Lemmas 9and 10, the latter 
onditions is equivalent to T (Ap treesQ;� ) � Si T (A
iQ;�).This allows us to establish the main result of the paper.Theorem 12 Containment of a (re
ursive) Datalog program in a union ofC2RPQs is in 2EXPTIME.Proof. By Proposition 5, we 
an 
onstru
t a 2ATA A�Q;�, whose size is expo-nential in the size of � and �, su
h that T (A�Q;�) = Si T (A
iQ;�). By Propo-sition 4, we 
an 
onstru
t a 1NTA A:�Q;�, whose size is doubly exponential inthe size of � and �, su
h that a �-labeled tree is a

epted by A:�Q;� if andonly if it is not a

epted by A�Q;�. By Proposition 6, we 
an 
onstru
t a 1NTAA
ont , whose size is still doubly exponential in the size of � and �, su
h thatA
ont a

epts a �-labeled tree if and only if it is a

epted by Ap treesQ;� but nota

epted by any of the A
iQ;�. By Theorem 11, A
ont is nonempty if and only22



if � is not 
ontained in �. By Proposition 7, nonemptiness of A
ont 
an be
he
ked in time polynomial in its size, and hen
e doubly exponential in thesize of � and �. The 
laim follows.6 Lower BoundNext we turn to the lower bound for 
ontainment of Datalog in unions ofC2RPQs. In [25℄, it is shown that 
ontainment of Datalog in unions of 
on-jun
tive queries is 2EXPTIME-hard, by a redu
tion from a

eptan
e of analternating EXPTIME Turing ma
hine. The en
oding in that proof uses EDBpredi
ates of arity di�erent from 2, and hen
e does not dire
tly apply to
ontainment of Datalog in unions of C2RPQs, where all EDB predi
ates arebinary. Nevertheless, the problem of 
ontainment of a Datalog program in aunion of 
onjun
tive queries over arbitrary EDB predi
ates 
an be redu
ed tothe problem of 
ontainment of a Datalog problem in a union of 
onjun
tivequeries over binary EDB predi
ates, as shown below.Let � be a Datalog program with goal predi
ate Q over EDB predi
ates ofarbitrary arity, and � a union of 
onjun
tive queries over the EDB predi
ates of�. We 
onstru
t a Datalog program �0 with goal predi
ate Q over binary EDBpredi
ates and a union of 
onjun
tive queries �0 over binary EDB predi
atesas follows:� For ea
h EDB predi
ate R of arity n > 2 appearing in � or � we 
onsider Rin �0 as an IDB predi
ate, and we introdu
e n fresh binary EDB predi
atesRi, for i 2 1; : : : ; n, whi
h represent the 
omponents of tuples of R. Also,the following rule is added to �0:R(x1; : : : ; xn)  R1(y; x1); : : : ; Rn(y; xn)where y is an existential variable that represents the tuple (x1; : : : ; xn).� For ea
h unary EDB predi
ate R appearing in � or �, we 
onsider R in �0as an IDB predi
ate, and we introdu
e a fresh binary EDB predi
ate Ru.Also, the following rule is added to �0:R(x)  Ru(x; x)� For ea
h 0-ary EDB predi
ate R appearing in � or �, we 
onsider R in �0as an IDB predi
ate, and we introdu
e a fresh binary EDB predi
ate R0.Also, the following rule is added to �0:R  R0(x; x)� �0 additionally 
ontains all rules of �.23



In the following, we 
all the binary EDB predi
ates Ri (resp., Ru or R0) newlyintrodu
ed in �0 fresh EDB predi
ates. The union of 
onjun
tive queries �0 isobtained from � by� repla
ing ea
h atom R(z1; : : : ; zn) over an n-ary (with n > 2) predi
ate Rwith the 
onjun
tion of atoms R1(w; z1); : : : ; Rn(w; zn), where w is a freshvariable;� repla
ing ea
h unary atom R(z) with the binary atom Ru(z; z);� repla
ing ea
h 0-ary atom R with the binary atom R0(w;w), where w is afresh variable.Lemma 13 Let � be a Datalog program with goal predi
ate Q and � a unionof 
onjun
tive queries, both over arbitrary EDB predi
ates. Let �0 and �0 bethe Datalog program and the union of 
onjun
tive queries, both over binaryEDB predi
ates, de�ned from � and � as above. Then � is 
ontained in � ifand only if �0 is 
ontained in �0.Proof. \)" Assume that for ea
h expansion tree � in trees(Q;�) there is a
ontainment mapping from some 
onjun
tive query in � to � . We show thatfor ea
h expansion tree � 0 in trees(Q;�0) there is a 
ontainment mapping fromsome 
onjun
tive query in �0 to � 0. Sin
e ea
h fresh EDB predi
ate appearsin �0 only in the body of rules whose head is an EDB predi
ate of arity n 6= 2of � or ', and su
h rules 
ontain in their body only fresh EDB predi
ates,we have that ea
h node in � 0 
ontaining a fresh EDB predi
ate is a leaf node.Moreover, there is an expansion tree � in trees(Q;�) su
h that � 0 is obtainedfrom � by adding for ea
h node g of � :� for ea
h EDB atom R(x1; : : : ; xn), with n > 2, appearing in (the bodyof the rule instan
e labeling) g, a 
hild of g labeled by a rule instan
eR(x1; : : : ; xn) R1(y; x1); : : : ; Rn(y; xn);� for ea
h unary EDB atom R(x) appearing in g, a 
hild of g labeled by arule instan
e R(x) Ru(x; x);� for ea
h 0-ary EDB atom R appearing in g, a 
hild of g labeled by a ruleinstan
e R R0(x; x).Let � be an expansion tree in trees(Q;�). By hypothesis, there exists a 
on-tainment mapping h from some 
onjun
tive query ' in � to � . Let '0 bethe 
onjun
tive query in �0 obtained from '. Consider an atom R(z1; : : : ; zn),with n > 2, in ', and let h map su
h an atom to an atom R(x1; : : : ; xn) ina node g of � . Let R1(w; z1); : : : ; Rn(w; zn) be the 
onjun
tion of atoms in '0
orresponding to R(z1; : : : ; zn), where, by 
onstru
tion, w is a variable not ap-pearing in any other atom of '0. Consider the 
hild g0 of g in � 0 
orrespondingto the expansion of R(x1; : : : ; xn), and let g0 be labeled by the rule instan
eR(x1; : : : ; xn)  R1(y; x1); : : : ; Rn(y; xn). Then, we 
an extend h so that itmaps w to y and the atoms 
ontaining w to the atoms in the body of the rule24



instan
e labeling g0. Similarly, 
onsider a unary atom R(z) in ', and let h mapsu
h an atom to an atom R(x) in a node g of � . Let Ru(z; z) be the atom in'0 
orresponding to R(z). Consider the 
hild g0 of g in � 0 
orresponding to theexpansion of R(x), and let g0 be labeled by the rule instan
e R(x) Ru(x; x).Then, sin
e h maps z to x, it also maps the atom Ru(z; z) to Ru(x; x), whi
h isthe only atom in the body of the rule instan
e labeling g0. We 
an pro
eed ina similar way for 0-ary atoms. It is immediate to verify that, by pro
eeding inthe same way for all non-binary atoms of ', we have that h is a 
ontainmentmapping from '0 to � 0.\(" Assume that for ea
h expansion tree � 0 in trees(Q;�0) there is a 
on-tainment mapping from some 
onjun
tive query in �0 to � 0, and let � bean expansion tree in trees(Q;�). We show that there is a 
ontainment map-ping from some 
onjun
tive query in � to � . Let � 0 be an expansion treein trees(Q;�0) obtained from � by adding for ea
h node g of � and ea
hEDB atom R(x1; : : : ; xn), with n > 2, appearing in (the body of the rule in-stan
e labeling) g, a 
hild of g labeled by a rule instan
e R(x1; : : : ; xn)  R1(y; x1); : : : ; Rn(y; xn), where y is a di�erent fresh variable for ea
h atom.Similarly for ea
h unary and 0-ary EDB atom appearing in a node of � . Byhypothesis, there is a 
onjun
tive query '0 in �0 su
h that there exists a 
on-tainment mapping h from '0 to � 0. Let ' be the 
onjun
tive query in � fromwhi
h '0 is derived. Consider a 
onjun
tion of atoms R1(w; z1); : : : ; Rn(w; zn)in '0 
orresponding to an atom R(z1; : : : ; zn) in ', where, by 
onstru
tion,w is a variable not appearing in any other atom of '0. Let g0 be the nodeof � 0 
ontaining (in the body of the rule instan
e labeling g0) the atomR1(y; x1) to whi
h h maps R1(w; z1). By 
onstru
tion of � 0 the variable yappears only in atoms of g0. Hen
e, the rule instan
e labeling g0 will be of theform R(x1; : : : ; xn) R1(y; x1); : : : ; Rn(y; xn), where R1(y; x1); : : : ; Rn(y; xn)are the atoms to whi
h h maps R1(w; z1); : : : ; Rn(w; zn), respe
tively. It fol-lows that we 
an map the atom R(z1; : : : ; zn) in ' to the atom in the headR(x1; : : : ; xn) of the rule instan
e labeling g0, or, equivalently, to the atomR(x1; : : : ; xn) in the prede
essor node g of g0 in � 0 and hen
e also in � . We
an reason in a similar way for binary atoms in '0 
orresponding to unary and0-ary atoms of '. It is immediate to verify that, by pro
eeding as above forall 
onjun
tions of atoms in '0 
orresponding to atoms of ' of arity greaterthan 2, and for all atoms in '0 
orresponding to unary and 0-ary atoms of ',we have that h is a 
ontainment mapping from ' to � .Considering that the 
onstru
tion above is linear in � and ', from2EXPTIME-hardness of 
ontainment of Datalog in unions of 
onjun
tivequeries over arbitrary EDB predi
ates [25℄, we obtain the following result.Theorem 14 Containment of a Datalog program in a union of 
onjun
tivequeries, both over binary EDB predi
ates, is 2EXPTIME-hard.25



By Theorem 12, we get the following 
omputational 
omplexity 
hara
teriza-tion.Theorem 15 Containment of a (re
ursive) Datalog program in a union ofC2RPQs is 2EXPTIME-
omplete.7 Con
lusionsWe have established de
idability of 
ontainment of Datalog queries in unionsof 
onjun
tive 2-way regular path queries, and 
hara
terized the 
omplexityof the problem as 2EXPTIME-
omplete. This is the most general known de-
idability result for 
ontainment of re
ursive queries, apart from the resultin [23℄ for monadi
 Datalog. The 
lass of union of C2RPQs has several fea-tures that are typi
al of modern query languages, in parti
ular of those forsemistru
tured data. Unions of C2RPQs 
onstitute the largest fragment ofquery languages for XML data [45℄ for whi
h 
ontainment is known to bede
idable [34℄.The 2EXPTIME upper-bound result shows that adding transitive 
losure to
onjun
tive queries does not in
rease the 
omplexity of query 
ontainmentwith respe
t to Datalog queries, as it mat
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