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Abstract

One of the most important reasoning tasks on queries is checking containment,
i.e., verifying whether one query yields necessarily a subset of the result of another
one. Query containment is crucial in several contexts, such as query optimization,
query reformulation, knowledge-base verification, information integration, integrity
checking, and cooperative answering. Containment is undecidable in general for
Datalog, the fundamental language for expressing recursive queries. On the other
hand, it is known that containment between monadic Datalog queries and between
Datalog queries and unions of conjunctive queries are decidable. It is also known that
containment between unions of conjunctive two-way regular path queries, which are
queries used in the context of semistructured data models containing a limited form
of recursion in the form of transitive closure, is decidable. In this paper we combine
the automata-theoretic techniques at the base of these two decidability results to
show that containment of Datalog in union of conjunctive two-way regular path
queries is decidable in 2EXPTIME. By sharpening a known lower bound result for
containment of Datalog in union of conjunctive queries we show also a matching
lower bound.
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1 Introduction

Querying is the fundamental mechanism for extracting information from a
database. The basic reasoning task associated to querying is query answer-
ing, which amounts to computing the information to be returned as result of
a query. There are, however, other reasoning services involving queries that
data and knowledge representation systems should support. One of the most
important is checking containment, i.e., verifying whether one query yields
necessarily a subset of the result of another one. Query containment, called
subsumption in Al [1,2], is crucial in several contexts, such as query opti-
mization, query reformulation, knowledge-base verification, information inte-
gration, integrity checking, and cooperative answering; cf. [3-13]. Thus, it is
fair to describe query containment as one of the most fundamental database
reasoning tasks.

Needless to say, query containment is undecidable if we do not limit the ex-
pressive power of the query language; it is clearly undecidable for first-order
logic. In fact, in knowledge representation suitable query languages have been
designed for retaining decidability. The same is true in databases, where the
notion of conjunctive query is the basic one in the investigation of reasoning
about queries [14]. A conjunctive query (CQ) is simply a conjunction of atoms,
where each atom is built out from relation symbols and (existentially quanti-
fied) variables. Relationally, a CQ is a project-join query. By adding union and
recursion to conjunctive queries, one gets Datalog, the language of logic pro-
grams (known also as Horn-clause programs) without function symbols [15],
which is essentially a fragment of fixpoint logic [16,17]. Datalog consists, in a
pure way, only of the most fundamental elements of relational queries: join,
projection, union, and recursion. With respect to query containment, CQs and
Datalog span the spectrum in terms of computational complexity. In [14] it is
shown that CQ containment is equivalent to CQ evaluation (NP-complete).
(For some extensions, see [18-21].) On the other hand, it is shown in [22] that
containment of Datalog queries is undecidable; the proof is by reduction from
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the containment problem for context-free grammars.

The most powerful query-containment results for Datalog are given in [23-25].
In [23] it is pointed out that tree-automata techniques can be used to prove
the decidability of query containment for monadic Datalog, where rule heads
use a single variable (which means that intermediate result of the query, as
well as the final one, are sets of data elements). The other results apply to
the relationship between Datalog and non-recursive Datalog (non-recursive
Datalog queries are in essence unions of conjunctive queries). In [24] it is
shown that checking containment of nonrecursive Datalog queries in Datalog
queries is decidable in exponential time. In [25] (see also [21]) it is shown, using
tree-automata techniques, that containment of Datalog queries in nonrecursive
Datalog queries is decidable in triply exponential time. When the non-recursive
query is represented, via unfolding, as a union of CQs, the complexity is doubly
exponential, rather than triple exponential. (These bounds are known to be
optimal, see [26,4] for studies of special cases and some extensions.)

In this paper we address the problem of query containment in the context
of semistructured data models. Our goal is to capture the essential features
found in databases, both traditional and semistructured, as well as knowledge
bases in semantic networks, conceptual graphs, and description logics. For
this purpose, we conceive a database as an edge-labeled graph, where nodes
represent objects, and a labeled edge between two nodes represents the fact
that the binary relation denoted by the label holds for the objects. This model
captures data expressed using XML-like languages [27,28] and is accepted as
a standard model for semistructured data [29,30].

In this framework, a basic querying mechanism is the one of regular path
queries (RPQ) [29,31,32], which ask for all pairs of objects that are connected
by a path conforming to a regular expression. Regular path queries are ex-
tremely useful for expressing complex navigations in a graph. In particular,
union and transitive closure are crucial when we do not have a complete knowl-
edge of the structure of the database. In our regular path queries, we include
also the inverse operator, which enables us to navigate edges backwards [29,7],
for example, from a child to its parent. We denote these queries by 2RPQs
(two-way regular path queries). Using 2RPQs as the basic querying mecha-
nism, one can construct conjunctive 2-way regular path queries (C2RPQs),
which enables us to perform joins and projections over 2RPQs. C2RPQs are
the basic building blocks for querying semistructured data [33,13,31]. The
containment problem for C2RPQs (actually for unions of such C2RPQs) was
studied in [34] (see also [33]), where it was shown, using two-way automata,
to be EXPSPACE-complete.

The notable fact about the decidability of containment for C2RPQs is that
C2RPQs are a fragment of recursive Datalog, due to the transitive closure op-



erator. Thus, the result in [33,34] is the first decidability result for containment
of non-monadic recursive Datalog queries. The fact that automata-theoretic
techniques are used both in [25] and in [34] suggests that perhaps the two de-
cidability results can be combined. We show here that this is indeed the case
by proving the decidability of the containment of Datalog queries in union
of C2RPQs (which, implies the known decidability result for containment of
union of C2RPQs). The automata-theoretic techniques combine tree automata
with two-way automata; we use alternating two-way tree automata [35]. The
upper bound is doubly exponential time, just as in [25], which we show to be
optimal.

The rest of the paper is organized as follows. In Section 2 we present the data
model and query languages for semistructured data we adopt in this paper. In
Section 3 we provide some preliminary results on the characterization of con-
tainment of Datalog queries in unions of conjunctive queries. In Section 4 we
introduce two-way alternating tree automata, which are used in Section 5 to
establish the upper bound for containment of Datalog in unions of C2RPQs.
In Section 6 we show a matching lower bound. Finally, in Section 7 we con-
clude the paper by discussing the impact of our results on view-based query
processing.

2 Databases and Queries

We consider a semistructured database (DB) G as an edge-labeled graph (D, £),
where D is the set of nodes, and £ is the set of edges labeled with elements of
an alphabet A. A node represents an object, and an edge between nodes d;
and ds labeled e, denoted e(d;, dy), represents the fact that the binary relation
e holds for the pair (dy, dy).

The basic querying mechanism on a DB is that of regular path queries (RPQs).
An RPQ FE is expressed as a regular expression or a finite automaton, and
computes the set of pairs of nodes of the DB connected by a path that conforms
to the regular language L(FE) defined by FE. We consider unions of conjunctive
2-way regular path queries [34], which extend regular path queries with the
possibility to traverse edges backward, with conjunctions and variables, and
with union.

Formally, Let A be a set of binary relation symbols, and let AT = AU A,
with A~ = {e” | e € A}. Intuitively, e~ denotes the inverse of the binary
relation e. If 7 € A*, then we use 7~ to mean the inverse of the relation r,
ie.,if ris e, then r~ is e, and if r is e™, then r~ is e.

2-way regular path queries (2RPQs) are expressed by means of regular expres-



sions or finite word automata over A*. Thus, in contrast with RPQs, 2RPQs
may use also the inverse e~ of e, for each e € A. When evaluated over a
DB G, a 2RPQ E computes the set E(G) of pairs of nodes (dy, d,) such that
ri(dy, dy),ro(dy,dy), ..., re(dg—1,dy) hold in G and r7ry---7, is in the regu-
lar language L(E) defined by E. Observe that, when ¢ = 0, we have that
riry -1y =€ and dy = d,,.

Conjunctive 2-way regular path queries (C2RPQs) are conjunctions of atoms,
where each atom specifies that one 2RPQ holds between two variables. More
precisely a C2RPQ 7 of arity n is a formula of the form

Q(xla"'axn) — El(ylayll)a ER) Em(ymay;n)

where T1,...,Zn, Y1, Y] - -, Ym, Yb, Tange over a set {uy, ..., ux} of variables and
FEy, ..., F, are 2RPQs. The variables 1, ..., z, are called distinguished vari-
ables. The answer set v(G) to a C2RPQ « over a DB G = (D, &) is the set
of tuples (di,...,d,) of nodes of G such that there is a total mapping o from
{uq,...,ur} to D with o(z;) = d; for every distinguished variable z; of , and
(o(y),o(y")) € E(G) for every conjunct E(y,y') in v. When the arity of v is
0, then it is viewed as a Boolean query; the answer set is either the empty set
(corresponding to false) or the set containing the 0-ary tuples (corresponding
to true).

Finally, a union of conjunctive 2-way reqular path queries of arity n has the
form U;v;, where each 7; is a C2RPQ of arity n. The answer set to a union
of C2RPQs I' = U;; over a DB G is simply I'(G) = U;v;(G). Notice that
traditional conjunctive queries (resp., unions of conjunctive queries) (cf. [15])
are just a special case of C2RPQs (resp., unions of C2RPQs) in which each
2RPQ in an atom is simply a relation symbol.

A Datalog program consists of a set of Horn rules. A (Horn) rule is a first-order
material implication between a body and a head, where the head consists of a
single atom, and the body consists of a conjunction of atoms. Each atom is a
formula of the form R(z1, ..., x,) where R is a predicate symbol and x1, . .., z,
are variables. All variables are implicitly universally quantified outside the
rule, and all variables appearing in the head are among the variables in the
body. The predicates that occur in heads of rules are called intensional (IDB)
predicates. The rest of the predicates are called extensional (EDB) predicates.
Here we consider Datalog programs that are evaluated over a semistructured
database. Hence, when not explicitly noted otherwise, we assume that the
EDB predicates are among the predicates in A, which are all binary. Observe,
however, that IDB predicates, which are not in A, may be of arbitrary arity.

We define now the answer set to a Datalog program II with goal predicate



@ over a DB G. Let D be a collection of facts about the extensional and
intensional predicates of II. Then, the facts that can be deduced from D by
applying a rule

R(xy,...,2,) < Ri(y"),...,Rn(y™)

of IT are all facts of the form R(dy,...,d,) such that dy,...,d, are nodes of T
and there is a substitution of the variables in the body of the rule with nodes
of I' that substitutes z; with d; and such that, after the substitution, all atoms
of the body are among the facts in D. We denote by O (D) the collection of
facts obtained as the union of D with all facts that can be deduced from D
by applying one of the rules of II. For a DB G, let

Dy=¢6
Diy1 = Ou(Dy)

Then, for an IDB predicate @ of II, the answer set Qf(G) to the Datalog
program II with goal predicate ) over the DB G is the collection of facts
about ) in Dy, where h is the least number such that Dy, = Dj, ;. Note that
such an h always exists [15].

We say that a Datalog program II with goal predicate @) is contained in a
union of C2RPQs I' if QP (G) C I'(G) for every database G.

3 Containment of Datalog in Unions of Conjunctive Queries

A containment mapping from a conjunctive query v to a conjunctive query
¢ is a renaming of variables subject to the following constraints: (a) every
distinguished variable must map to itself, and (b) after renaming, every literal
in ¢ must be among the literals of ¢. It is well known that containment of
conjunctive queries can be characterized in terms of containment mappings
(cf. [15]). In fact this characterization has been extended in [19] to unions of
conjunctive queries, and holds also for infinite unions.

Theorem 1 ([19]) Let ® = U;p; and ¥ = U;1h; be (possibly infinite) unions
of conjunctive queries. Then ® is contained in ¥ (i.e., ®(G) C V(G) for every
database G) if and only if for each ¢; there is a ; such that ¢; is contained
in 1j, i.e., there is a containment mapping from 1; to ;.

As for containment of Datalog in (unions) of conjunctive queries, it is known
(cf. [36,37]) that the relation defined by an IDB predicate @ in a Datalog



program II, i.e., Q°(G), can be defined by a possibly infinite union of con-
junctive queries. That is, for each IDB predicate () there is an infinite se-
quence g, @1, ... of conjunctive queries such that, for every database G, we
have Q¥ (G) = U2, ¢i(G). The ¢;’s are called the ezpansions of Q. In [25], ex-
pansions of a Datalog program II are described in terms of so-called ezpansion
trees, which are finite trees in which each node is labeled with an instance of
a rule of II. We call the head and the body of a node respectively the head
and the body of the rule labeling the node. In an expansion tree for an IDB
predicate (), the root is labeled by a rule whose head is a @-atom. If a node
g is labeled by a rule instance

R(t) «+ Ri(tY),...,R,(t™)

where the IDB atoms in the body of the rule are R;, (t%),..., R;,(t"), then g
has children g1, ..., g/ labeled with rule instances whose heads are respectively
the atoms R;, (t"'),..., R;,(t"). In particular, if all atoms in the body of g are
EDB atoms, then g must be a leaf. The query corresponding to an expansion
tree is the conjunction of all EDB atoms in the nodes of the tree, with the
variables in the head of the root as the distinguished variables. Thus, we can
view an expansion tree 7 as a conjunctive query, and extend, in the obvious
way, the notion of containment mapping also to mappings from a conjunctive
query to an expansion tree. Let trees(Q, IT) denote the set of expansion trees
for an IDB predicate @ in II. (Note that ¢rees(Q, 1) is, in general, an infinite
set.) Then for every database G, we have

Qr@g) = U 79

TEtrees(Q,IT)

It follows that II is contained in a conjunctive query ¢ if there is a containment
mapping from ¢ to each expansion tree 7 in trees(Q,IT).

Unfortunately, the number of variables, and hence the number of node labels
in expansion trees is not bounded, and thus expansion trees are not directly
suited for an automata-theoretic approach to containment. In [25], the notion
of proof tree is introduced, with the idea of describing expansion trees using
a finite number of labels. The number of labels is bound by bounding the set
of variables that can occur in labels of nodes in the tree. If r is a rule of a
Datalog program I, then let num_var(r) be the number of variables occurring
in IDB atoms in r (head or body). Let num_var(II) be twice the maximum of
num_var(r) for all rules r in II. Let var(IT) be the set {z1,..., Zpum_varm)}- A
proof tree for Il is simply an expansion tree for I all of whose variables are
from wvar(IT). We denote the set of proof trees for a predicate @ of a Datalog
program II by p_trees(Q, IT).



A proof tree represents an expansion tree where variables are re-used. In other
words, the same variable is used to represent a set of distinct variables in the
expansion tree. Intuitively, to reconstruct an expansion tree for a given proof
tree, we need to distinguish among occurrences of variables. Let g; and g5 be
nodes in a proof tree 7, with a lowest common ancestor gy, and let x; and x,
be occurrences, in g; and g¢o, respectively, of a variable . We say that x; and
xo are connected in 7 if the head of every node, except perhaps for gy, on the
simple path connecting g; and gy has an occurrence of z. (Notice that this
means that x also occurs in the body of gg.) We say that an occurrence x of a
variable x in 7 is a distinguished occurrence if it is connected to an occurrence
of z in the head of the root of 7.

We want to define containment mappings from conjunctive queries to proof
trees such that there is a containment mapping from a conjunctive query to a
proof tree if and only if there is a containment mapping from the conjunctive
query to the expansion corresponding to the proof tree. To do so, we need
to force a variable in the conjunctive query to map to a unique variable in
the expansion corresponding to the proof tree. A strong containment mapping
from a conjunctive query ¢ to a proof tree 7 is a containment mapping h from
¢ to 7 with the following properties:

e h maps distinguished occurrences in ¢ to distinguished occurrences in 7,
and

e if x; and x5 are two occurrences of a variable x in ¢, then the occurrences
h(x;) and h(xy) in 7 are connected.

The following characterization of containment of a union of conjunctive queries
in a Datalog program was shown in [25].

Theorem 2 ([25]) Let Il be a Datalog program with goal predicate @Q), and
let ® = U;p; be a (possibly infinite) union of conjunctive queries over EDB
predicates. Then 11 is contained in ® if and only if for every proof tree T €
p_trees(Q, 1) there is a strong containment mapping from some p; to T.

The above theorem is shown in [25] for finite unions of conjunctive queries
only. However, it is easy to see that the proof carries through also for infinite
unions.

Notice that, together with Theorem 1, Theorem 2 by itself does not pro-
vide decidability of containment of Datalog in (possibly infinite) unions of
conjunctive queries, since one needs a method to check the existence of a
strong containment mapping. Undecidability of containment between Datalog
queries [22] shows that such a method will not exist in general for (infinite)
unions that are expansions of Datalog programs. However, in [25] the above re-
sult is exploited to show that containment of a Datalog query in a finite union
of conjunctive queries is in 2EXPTIME (and in fact 2EXPTIME-complete).



To exploit Theorem 2 for containment of Datalog queries in union of C2RPQs,
we need to characterize the problem in terms of containment between Datalog
and (infinite) unions of conjunctive queries. An ezpansion of a C2RPQ

Q(xla"'axn) — El(ylayll)a R Em(ymay;n)

is a CQ of the form

Q.. ma) iy, 21), ri(eg, 2), o T ),
P Yo 2n) s T (Zons Zm) o o (2 )

where, for each 7 € {1,...,m}, we have that n; > 0, that r; --- 7" € L(E;),
and that all variables z] are pairwise distinct. Observe that, when n; = 0, we
have that 7} ---r = ¢ and r}(y;, 2}), 72(2}, 22), ..., v (27", y}) becomes

simply y; = y.. Notice that, a C2RPQ has in general many expansions, and
that, due to transitive closure, the number of such expansions may be infinite.

The following lemma is an easy consequence of Theorem 2 and of the semantics
of unions of C2RPQs.

Lemma 3 Let Il be a Datalog program with goal predicate Q), and let T' = U;;
be a finite union of C2RPQs. Then 11 is contained in I" if and only if for every
proof tree T € p_trees(Q, 1) there is a C2RPQ v; of ' and an expansion ¢ of
v; such that there is a strong containment mapping from ¢ to T.

In the following, we show how to check this condition using tree automata.
Unlike [25], where standard (one-way) nondeterministic tree automata are
adopted, we need to resort to two-way alternating tree automata. This is due
to the presence of inverses of relations in 2RP(Qs, and due to the fact that in
2RPQs (and hence in C2RPQs) concatenation and transitive closure introduce
implicit variables that need to be dealt with.

4 Two-way Alternating Tree Automata

We present the basic notions on automata used in the rest of the paper. We
assume familiarity with the standard notions of (one-way) word automata
(INFAs) [38] and (one-way) nondeterministic tree automata (1NTAs) [39],
and concentrate on two-way alternating tree automata (2ATAs).

Trees are represented as prefix closed finite sets of words over N, (the set of



positive natural numbers). Formally, a tree T is a finite subset of N, such
that if g-c € T, where g € N, and ¢ € Ny, then also g € T and if ¢ > 1
then also g-(¢c — 1) € T. The elements of T are called nodes, and for every
g € T, the nodes g-c € T, with ¢ € N, are the successors of g. By convention
we take g-0 = g, and g-c:(—1) = g. By definition, the empty sequence ¢ is a
member of every tree, and is called the root. Note that £ - —1 is undefined.
The branching degree d(g) of a node g denotes the number of successors of g.
If the branching degree of all nodes of a tree is bounded by k, we say that the
tree has branching degree k. Given a finite alphabet X, a ¥-labeled tree T is
a pair (T, V), where T is a tree and V : T'— ¥ maps each node of T to an
element of . Y-labeled trees are often referred to as trees, and if 7 = (T, V)
is a (labeled) tree and ¢ is a node of T, we use 7(g) to denote V(g).

Two-way alternating tree automata (2ATAs) [35,23], are a generalization of
standard nondeterministic top-down tree automata (1NTAs) [40,41]) with
both upward moves and with alternation. Let B(I) be the set of positive
Boolean formulae over I, built inductively by applying A and V starting from
true, false, and elements of I. For a set J C [ and a formula ¢ € B(I), we say
that J satisfies ¢ if and only if, assigning true to the elements in .J and false to
those in I\ J, makes ¢ true. For a positive integer k, let [k] = {—1,0,1,...,k}.
A two-way alternating tree automaton (2ATA) over a finite alphabet 3 run-
ning over trees with branching degree k, is a tuple A = (X, S, 4, sq, F'), where
S is a finite set of states, 0 : S x ¥ — B([k] x S) is the transition function,
sg € S is the initial state, and F' C S is the set of final states. The transition
function maps a state s € S and an input letter o € ¥ to a positive Boolean
formula ¢ over [k] x S. Since ¢ can be written in conjunctive normal form, in
the following we view it as a set of conjunctions. Intuitively, when the 2ATA
performs a transition, it nondeterministically chooses one of the conjunctions
in ¢, and then, for each pair (¢, s') appearing in ¢ a new copy of the automaton
starts in state s’ and moves to the direction suggested by c.

A run v of a 2ATA A over a labeled tree 7 = (T, V) is a labeled tree (7,,V,)
in which every node is labeled by an element of T'x S. A node f of T, labeled
by (g, s) describes a copy of A that is in the state s and reads the node g of
7. The labels of adjacent nodes have to satisfy the transition function of A.
Formally, a run (7,,V,) is a (T x S)-labeled tree satisfying:

(1) e € T, and V,(g) = (&, so).

(2) Let f € T,, with V,(f) = (g,s) and 6(s,V(g)) = ¢. Then there is a
(possibly empty) set C' = {(c1,51),...,(¢n,5n)} C [k] x S such that:
e ( satisfies ¢ and
e for all i € {1,...,n}, we have that fi € T,, g-¢; is defined, and

Vi (f) = (g-ci, i)

A run v = (T,,V,u) on a tree 7 is accepting if, whenever a leaf of T}, is labeled

10



by (g, s), then s € F. A accepts a labeled tree 7 if it has an accepting run on 7.
The set of trees accepted by A is denoted T (A). The nonemptiness problem
for tree automata consists in deciding, given a tree automaton A, whether
7 (A) is nonempty.

As shown in [23], 2ATAs can be converted to complementary 1NTAs with
only a single exponential blowup. Moreover, it is straightforward to see that
one can construct a 2ATA of polynomial size accepting the finite union of the
languages accepted by n 2ATAs.

Proposition 4 ([23]) Given a 2ATA A over an alphabet X, there is a INTA
A of size exponential in the size of A such that A accepts a Y-labeled tree T
if and only if T is rejected by A.

Proposition 5 Given n 2ATAs A4, ..., A, over an alphabet X, there is a
2ATA A, of size linear in the sum of the sizes of Aq,..., A, such that
TAL)=TA)U---UT(A,).

We make also use of the following standard results for 1INTAs.

Proposition 6 ([42]) Given INTAs Ay and Ay over an alphabet X, there is
a INTA A~ whose size is the product of the sizes of Ay and Ay such that
T(An) = T(A1)NT(As).

Proposition 7 ([40,41]) The nonemptiness problem for 1INTAs is decidable
in polynomial time.

In fact, the nonemptiness problem for 1NTAs is decidable in linear time,
see [43,44]

5 Containment of Datalog in Unions of C2RPQs

The main feature of proof trees is the fact that the number of possible labels
is finite; it is actually exponential in the size of II. Because the set of labels is
finite, the set of proof trees p_trees(Q, 1), for an IDB predicate ) in a program
[T, can be described by a tree automaton.

Theorem 8 ([25]) Let I1 be a Datalog program with a goal predicate Q). Then
there is a INTA A’é‘f{fes, whose size is exponential in the size of 11, such that

T(Ag_,?lees) — p_trees(Qa H) :

The automaton AL = (3,7 U {accept}, Ig, 6, {accept}), analogous to the
one defined in [25], is as follows.

11



The state set is the set Z of all IDB atoms with variables among var(II), plus
an accepting state. The start-state set Zg is the set of all atoms @Q(s), where
the variables of s are in var(II). The alphabet ¥ is is the set R of instances
of rules of IT over var(IT). The transition function ¢ is constructed as follows.
Let o be the body of a rule instance in R

R(t) «+ Ri(tY),...,Rn(t™)
e If the IDB atoms in g are R;, (t),..., R;,(t"), then there is a transition?
(L Riy (£7)) A== A(E R, (87)) € O(R(t), (B(t) « o))
e If all atoms in p are EDB atoms, then there is a transition

(0, accept) € O(R(t), (R(t) < o))
It is easy to see that the number of states and transitions in A%T™ is expo-
nential in the size of II.

We now show that strong containment of proof trees in a C2RPQ can be
checked by tree automata as well. Let II be a Datalog program with (binary)
EDB predicates in A and with goal predicate ), and let v be a C2RPQ over
AT of the same arity as (). We describe the construction of a 2ATA Azgﬂ that
accepts all proof trees 7 in p_trees(Q, IT) such that there is an expansion ¢ of
~ and a strong containment mapping from ¢ to 7.

We view v as a set of atoms E(x,y), where E is a INFA E =
(A*, Sk, 5,05, Fi), with sp € Sp and Fy C Sg, and where, w.l.o.g., dp
does not contain e-transitions. Also, w.l.o.g., we assume that for two distinct
atoms Fj(zq,y;) and Fy(xs,1y,), 1 and Fy are distinct automata with dis-
joint sets of states, i.e., Sg, N Sg, = 0. For a INFA E, we use EY to denote
the INFA identical to F, except that s € Sg is the initial state of EI', and
F C S is the set of final states of EI'. When F' is a singleton, we may omit
set brackets.

Let V, be the set of variables appearing in the C2RPQ v, and VF = {v};, 17, |
E(x,y) € v}, i.e., foreach INFA E(x,y) € v, V' contains two special variables
v}, and v%. We denote with B the collection of all sets 3 of atoms, such that
/3 contains, for each atom E(z,y) € v, at most one atom E(z', '), for some
s € Sp and F C Sg, with 2’ either 2 or 4}, and 3 either y or v%. Notice that
the size of B is exponential in the size of 7. Indeed, let & be the number of
atoms in v and let m be an upper bound on the number of states of each INFA
in 7. All possible variants of a 1INFA obtained by changing the initial state

3 For uniformity, we use the notation of 2ATAs to denote the transitions of 1INTAs.
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and/or final states are m - 2™. Hence, the number of possible sets of 1NFAs of
at most k elements is (m - 2™)k = 200mk),

The automaton A}, is (X, S U {accept}, Sg, 9, { accept}).

e The alphabet ¥ is again the set R of instances of rules of IT over var(II).

e The state set S is the set Z x B x 2V xvar(l) 5 oVi"xvar() Recall that T is the
set of all IDB atoms with variables among var(II). The second component
represents the collection of automata accepting sequences of atoms that have
to be mapped to atoms in the tree 7 accepted by Aan, and the third and
fourth components contain the set of partial mappings respectively from V,
and V¥ to var(I).

e The start-state set Sg consists of all tuples (Q(s),7, M,s,0), where the
variables of s are in var(Il) and M, is a mapping of the distinguished
variables of v into the variables of s.

The transition function ¢ of A,y is constructed as follows. Let ¢ be the body
of a rule instance in R

(1) There is an “atom mapping” transition
(0, (R(t), 5, M, MY)) € 6((R(t), B, M, M), (R(t) < o))

if there is an EDB atom e(a, b) among Ry (t'),..., R,(t™) and if 8’ coin-
cides with 3, except that one element ET (z,y) in 3 is replaced in 3’ by
EF(2',y), and one of the following holds:
e s’ €dp(s,e) and
- it x € V, (i.e., z is a variable of v), M maps = to a, and M, does
not map oy, then 2/ = oy, and M, = M, U {(v,b)};
- if v = o, € V¥ (i.e., x is the first special variable for the INFA E)
and (vp,a) € My, then o' = 2 = vy, and M/, = M, \ {(0p,a)} U
{7}, 0)};
o s’ €dp(l,e) and
- ifx €V, (i.e., x is a variable of v), M maps = to b, and M, does
not map vy, then 2’ = vy and M/, = M, U {(vy,a)};
- ifx =0y € V¥ (ie., x is the first special variable for the INFA FE)
and (vp;,b) € M, then 2/ = 2 = vy, and M, = M \ {(vp,b)} U
{(oh, )}

Intuitively, an “atom mapping” transition maps the next atom read by
some 1NFA in 3 to some EDB atom in p, and modifies M, accordingly.
Note that the variable x (either a variable of V, or the special variable
;) must already be mapped (respectively by M or M) to some variable
in the current node of 7.
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(2)

(4)

There is a “splitting” transition

(0, (Rr(t), 5", M, ML) A 0, (R(t), 8", M, MY)) €
O((R(t), 5, M, M), (B(t) < o))

if the following hold:

e M! and MY coincide with M, , except for the changes described in the
following point;

e (3 can be partitioned into [y, (s, and f3; moreover ' = (; U 5 and
p" = P U BY, where 55 and [} are sets of elements that consist of one
element for each element E(x,y) in (5, obtained as follows: for some
state s’ of F and some variable a € var(II) appearing in R(t) < g, one
of the following holds:

- B4 contains the element E?(z,v%), BY contains the element
El(vg,y), M, (re-)maps 0% to a, and MY (re-)maps v}, to a;

- B4 contains the element ET(v},,y), B4 contains the element
E¥ (2,0%), M} (re-)maps v}, to a, and M” (re-)maps 9% to a;

e " and B" can share a variable in V,, only if this variable is in the domain
of M. (Notice that two occurrences of a special variable in V* shared
by " and 8" are not related to each other.)

A “gplitting” transition partitions the atoms in S into two parts. The
goal is to enable the two parts to be manipulated separately. For example,
one part may correspond to those atoms that are intended to be “moved”
together to an adjacent node in a future transition, while the other part
may correspond to those atoms that are meant to stay together in the cur-
rent node for further processing, e.g., by further splitting or by mapping
to EDB atoms. During splitting, some atoms in # may be actually split
into two subatoms. The mappings M and M, have to “bind” together
variables that are in common to the two conjuncts of the transition.
There is a “downward moving” transition

(7, (Ri, (67), 8, M, M) € O((R(t), 8, M, M), (R(t) < o))

if j € {1,...,/}, where / is the number of IDB atoms in g and R; (t%) is
the j-th IDB atom, and if for all variables that occur in 5 and that are
in the domain of either M or M, their image is in t%.

A “downward moving” transition moves to a successor node, and is
intended to be applied whenever no next atom can be mapped and no
further splitting is possible. Moving is possible only if variables that are
both in atoms still to be mapped (and thus in §) and have already been
mapped (and thus are in the domain of either M or M, ) can be propa-
gated through the head of the rule to which the automaton moves.
There is an “upward moving” transition

<71’ (Rl(t’)vﬁa M, M+)> € 5((R(t)vﬁa Ma M+)v (R(t) — Q))
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if R'(t') is the head of some rule instance and if for all variables that
occur in [ and that are in the domain of either M or M, their image is
in t.

An “upward moving” transition is similar to a “downward moving”
one, except that it moves to the predecessor node. Notice that, after
an “upward moving” transition, the automaton will be able to perform
further moves (and hence to eventually accept) only if the head of the
rule instance in the predecessor node is R'(t').

(5) There is an “equality checking” transition

(7)

(0, (R(t), 5", M, My)) € o((R(t), 5, M, My), (R(t) < o))

if the following hold:
e (3 can be partitioned into Sy and 3’
e for all atoms EX(z,y) € By we have that
- seF,
- (z,a) and (y,a) are in M U M, for some variable a in p or t,
i.e., both z and y are in the domain of M or of M, and they are
mapped to the same variable «;

An “equality checking” transition gets rid of those elements in 3 all of
whose atoms have already been mapped to atoms in 7. While doing so,
it checks that M and M, are compatible with the equalities induced by
such atoms.

There is a “mapping extending” transition

<07 (R(t)aﬁaMlvM+)> € 5((R(t)76a Ma M+)v (R(t) — Q))

if M' is a partial mapping that extends M.

A “mapping extending” transition adds some variables to the mapping
M. This may be necessary to be able to apply some other transition that
requires certain variables to appear in M.

There is a “final” transition

(0, accept) € 6((R(t),0, M, M,), (R(t) < o))

A “final” transition moves to the accepting state whenever there are
no further atoms in 3 that have to be processed.

It is easy to see that the number of states and transitions in A/, 1 is exponential
in the size of [T and . The following two basic lemmas establish the correctness
of the above construction.

Lemma 9 Let 7 be a proof tree in p_trees(Q,11). If there is an expansion @

of v and a strong containment mapping h from @ to T, then 7 is accepted by
Al .
Q7H
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Proof. We prove acceptance by showing the existence of an accepting run v
of Azg,n- We view the expansion ¢ of v as a set of sequences of atoms; for each
atom E(z,y) in the body of 7, ¢ contains one sequence of atoms

YE = T](ZO,Z])a TQ(Z]aZQ)a R rn(zn*1’zn)

with 2 =2, 2" =y, and r' .- - 1" € L(E).

Besides the accepting run v we make use of a tree W, with the same set of
nodes as v, in which each node is labeled by a set of sequences of atoms of
¢. More precisely, for each node f, each w € W(f) is a (possibly empty)
subsequence of some sequence g in @, representing those atoms in g that,
when AZ),H is at node f of the run, have not already been mapped to atoms
in 7. For the root € we have that W(e) = ¢.

Let f be a node of the run v with v(f) = (g, (R(t),5, M, M,)), where
g is a node of 7 and 7(g9) = (R(t) < o). We say that W(f) is
compatible with [ if it consists of sequences of atoms, one sequence
w o= (4 2, e (2 v ), (20, 2Y) for each atom El (') 4y)
in 3, where w 1is a contiguous subsequence of the sequence ¢p =
r' (2%, 2Y), r3(2", 2%), ..., r"(2"1, 2") in ¢ corresponding to the atom E(z,y)
in v, and we have that

o rl...pV ¢ L(ESF)
o u>1iff ' =0}, and if u > 1 then (

oho (=) € M,
e v <niff y =0v%, and if v < n then (v

Lh
Es
B h(2")) € My;

For each atom ET(z,y) in 3 for which the corresponding sequence of atoms
in W(f)isr“(z4"',2%),...,r(z""", 2¥), we use 9(z) to denote z*~' and J(y)
to denote 2”. Notice that, if x € V,, then J(x) denotes = itself. We say that
f is connected, if for each variable x appearing both in  and in the domain
of M UM, R(t) < p contains an occurrence of a variable connected to the
occurrence h(d(z)). We say that M, is compatible with 3, if for each EF (z,y)
in 3, if z is in V,, then M, does not map v},; similarly for y. We say that the
pair (g,s), with g a node of 7 and s a state of A}y, is accepting (for Aj,
and 7) if there is an accepting run v of A}, ; on 7 and a node f of v such that

v(f) = (g:9).

We show that v(f) = (g, (R(t), 8, M, M,)) is accepting for A/, y and 7, if the
following conditions hold:

(1) M is consistent with 4 and maps all distinguished variables of ~;
(2) M, is compatible with f;
(3) f is connected,;

(4) W (f) is compatible with .
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We proceed by induction on S(f), where S(f) is the sum of the lengths of the
sequences of atoms in W(f). We count an equality atom as having length 1,
and a sequence consisting of n atoms different from equalities as having length
n + 1. Below we consider the case where conditions (1) to (4) are satisfied for
a node f. If they are not, the property we are proving trivially holds.

e Base case: S(f) = 0. Then W(f) is empty. So is 3, and AJ, ; can perform
a “final” transition to the accepting state. Hence v(f) is accepting.

e Inductive case 1: Assume there is a nonempty sequence w =
P20t ), r (2 2y (20 2Y) in W(f) with - or? € L(ET)
for some EI(z,y) in 3, such that the body ¢ of the rule of the node g of
the proof tree contains an atom r“(a,b) and we have that h(z*"!) = a and
h(z*) = b. In other words, h maps the first atom in w to an atom in g. We
consider the case where r* = e, for some e € A and where z € V, (i.e.,
u = 1 and x = 2% is a variable of ). The other cases can be dealt with
analogously.

Since r"---r” € L(EY), there must be some s’ € dg(s,e) such that
rett...yv e L(ET). Since M, is compatible with 3 it does not map v};.

Assume that x is in the domain of M. Since M is consistent with h it
maps x to a. Then AzQ,H can perform an “atom mapping” transition

(0, (R(t), 5", M, MY)) € O((R(t), 5, M, My), (R(t) < 0))

where (' coincides with 3, except that the element E” (z,y) in 3 is replaced
in ' by El (v}, y), and M}, = M, U {(v};,b)}.

Hence, in the run v there is a unique successor f-1 of f with v(f-1) =
(g, (R(t), ', M',M')). For W we have that W(f-1) coincides with W(f),
except that the sequence w in W(f) is replaced in W(f-1) by w' =
Ptz 2ot (207, 2Y). Observe that f-1 satisfies conditions (1)
to (4) and that S(f-1) = S(f) — 1, since we have mapped one atom of
W(f). Thus, by inductive hypothesis, v(f-1) is accepting, and hence also
v(f).

If z is not in the domain of M, then Azg,n can first perform a “mapping
extending” transition

(0, (R(t), 5, M', My)) € 6((R(t), 5, M, M), (R(t) < o))

such that M’ = M U {(z,a)}, and then perform the transition above. In
this case, M’ is still consistent with A and the resulting node in the run is
connected, since x is mapped to a variable in R(t) < p.

e Inductive case 2: Assume there is a sequence w =
ri(zvh 2"), (277 2Y) in W(f) that collapses to the equality

21 = 2% being r*---r* = ¢, and such that h maps 2% ' and 2°
to occurrences of a variable both connected to the same variable ¢ in
R(t) « o.

1

We consider only the case where 2"~ is a variable z in V., and and 2" is
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a variable y in V,. The other cases are analogous. For each Ef (z,y) in j
corresponding to w, we have that s € F'.

Assume that both x and y are in the domain of M. Since M is consistent
with A, it maps both =z and y to a. Thus AZ),]‘[ can perform the “equality
checking” transition

(0, (R(t), 5", M, M,)) € o((R(t), 5, M, M), (R(t) < o))

Hence, in the run v there is a unique successor f-1 of f with v(f-1) =
(g9, (R(t),5', M, M,)). For W we have that W(f-1) coincides with W (f) \
{w}. Observe that f-1 satisfies conditions (1) to (4) and that S(f-1) =
S(f)— 1. Thus, by inductive hypothesis, v(f-1) is accepting, and hence also
v(f).

If z or y is not in the domain of M, then A"é’n can first perform a
“mapping extending” transition, as in the previous case.

Inductive case 3: Consider some j € {—1,1,...,¢}, where ¢ is the number of
IDB atoms in p. Let WW; be the subset of W (f) consisting of those sequences
w of atoms such that A maps both the first and the last atom of w to atoms
in the j-th subtree of g, where we take the —1-th subtree of g to be 7
without the tree rooted at g. Let W; be the subset of W(f) consisting of
those sequences w of atoms such that A maps neither the first nor the last
atom of w to atoms in the j-th subtree of g. Let W3 be the remaining
sequences of atoms in W(f). Finally, let both W; and W5 be different from

W(f).
We have a corresponding partition of 5 into i, £, and (3. For each se-
quence w = (2" 2%), ..., r%(z""", 2”) in W3 corresponding to an element

EF(x,y) in B3, since r*(2*"', z*) is mapped to an atom in the j-th subtree
of g, and 7°(271, 2”) is mapped elsewhere, there must be some intermedi-
ate variable 2’ in the sequence that is mapped by A to an occurrence of a
variable connected to a variable a in R(t) <— p. (The case where the last
atom is mapped to the j-subtree is analogous.) Hence there must be a state
s' of E such that r*---7* € L(E*) and r't'-..1? € L(EL).

Let S5 be obtained from S35 by replacing each atom EX(z,y) with one of
E? (x,v,) or Ef(v};,y), depending on whether the first or the last atom of
the corresponding sequence in W3 is mapped to the j-th subtree. Let 35 be
defined the other way round. Finally, let 5’ = 5, U 85 and 5" = B U 3.

Assume that all variables of V, shared by ' and 3" are already in the
domain of M. Thus Az),n can perform the “splitting” transition

(0, (R(t), 5", M, M) A (0, (R(t), 5", M, MY)) €
O((R(t), 5, M, M), (R(t) < o))

with M’ and MY defined as required.
Hence, in the run v there are two successors f-1 and f-2 of f with
v(f-1) = (g9, (R(t), 5, M, M})) and v(f-1) = (g, (R(t), 5", M, MY)). For
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W we have that W (f-1) consists of W; union the set of subsequences of W3
corresponding to the elements in ;. Analogously for W (f-2).

Observe that f-1 and f-2 satisfy conditions (1) to (4) above, and that
both S(f-1) and S(f-2) are strictly smaller than S(f), since Wy and W, are
by assumption both different from W (f). Thus, by inductive hypothesis,
v(f-1) and v(f-2) are both accepting, and hence also v(f).

If some variable z in V,, is shared by 5’ and " but is not already in the
domain of M, then AZ)’H can first perform a “mapping extending” transition,
by adding (x,h(z)) to M. Observe that, since x in is shared by ' and 3",
one occurrence of x must be mapped by h in the j-th subtree, and one
somewhere else. Hence, since h is a strong containment mapping, the two
occurrences of h(x) must be connected, and so also R(t) < ¢ must contain
a connected occurrence of h(z). Thus the node in the run resulting from the
“mapping extending” transition is also connected.

Inductive case 4: When the conditions for the application of the base case
and the inductive cases 1 to 3 do not hold, then W (f) is still not empty
but we cannot progress with the mapping on the current node g. Since none
of the above cases apply it must be that for all variables z in g, ¥(z) is
mapped by h to a variable in the j-th subtree of g, for some j. Since f is
connected, all variables that appear both in 5 and in the domain of M UM
must be mapped by h to occurrence of variables connected to a variable in
R(t) < p. Since h is a strong containment mapping and all these variables
are mapped in the j-th subtree, if follows that they are connected through
variables of the j-th IDB atom in p (respectively, the head R(t), if j = —1).
Thus AJ, iy can perform either a “downward moving” transition

<ja (Rz] (tij)v Ba M, M+)> € 5((R(t)v Ba Ma M+)a (R(t) — Q))
or an “upward moving” transition
(=1, (R'(t), 8, M, My)) € O((R(t), 5, M, M), (R(t) < 0))

Hence, in the run v there is a unique successor f-1 of f with v(f-1) =
(97, (B (69), 8, M, M) (resp., v(f-1) = (g-(—1), (R'(¥). B, M, M,))). For
W we have that W (f-1) coincides with W (f). f-1 satisfies conditions (1)
to (4). Moreover, it is easy to see that one can perform transitions only a
finite number of times since it is not, possible that A requires to pass twice
through the same node g of 7. After such transitions, one of the cases above
applies. Hence, by inductive hypothesis, v(f) is accepting.

Finally, we observe that conditions (1), to (4) are trivially satisfied at the root

e of v and W. The claim follows. O

Lemma 10 Let 7 be a proof tree in p_trees(Q,11). If T is accepted by AZg,m
then there is an expansion ¢ of v and a strong containment mapping from ¢

to T.
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Proof. We construct from an accepting run v of A’é’n an expansion ¢ and a
strong containment mapping from ¢ to 7. We proceed by bottom-up induction
on the run, making use of a tree W analogous to the one used in the proof of
Lemma 9, and a tree h with the same set of nodes as v and W, and such that
h(f) is a strong containment mapping from the atoms in W (f) to atoms in 7.
In the following, let f be a node of v with v(f) = (g, (R(t), 5, M, M,)) and

7(g) = (R(t) < o).

We recall the definition of ¥(z), of connected node of a run, and of accepting
pair (g, s). For each atom EI(z,y) in 8 for which the corresponding sequence
of atoms in W(f) is r%(z% ', 2%),...,r" (27", 2%), we use J(x) to denote 2!
and Y(y) to denote zV. We say that f is connected, if for each variable x
appearing both in § and in the domain of M U M, R(t) + o contains an
occurrence of a variable connected to the occurrence h(9(x)). We say that the
pair (g,s), with g a node of 7 and s a state of AJ)y, is accepting (for A,
and 7) if there is an accepting run v of A/, ;; on 7 and a node f of v such that

v(f) = (g,9)

We further say that M, is consistent with h(f), if for each variable v% in the
domain of M, we have that M, maps v% to h(f)(9(v%)).

We will inductively construct W and h such that, for each node f of v (and
hence of h, and W), such that v(f) is accepting, we have that M and M, are
consistent with h(f) and that f is connected.

e Base case (“final” transition): If there is a “final” transition from a node f
to a node f-1 of v that is a leaf of the run labeled with the accepting state,
then 8 = (). Then W (f) is empty and so is h(f). Hence, trivially, h(f) is
a strong containment mapping from W (f) to 7, M and M, are consistent
with A(f), and f is connected.

e Inductive case 1 (“atom mapping” transition): If there is an “atom map-
ping” transition from a node f to a node f-1 of v, with v(f-1) =
(g, (R(t), ', M, M!)) accepting, then, by inductive hypothesis, W (f-1) con-
sists of one sequence of atoms for each element E (z,y) of 8, h(f-1) is a
strong containment mapping from W (f-1) to atoms in 7, M and M are
consistent with h(f-1), and f is connected.

We have that 3 coincides with ', except that one element E/(z,y) in 3
is replaced in 3" by ET(2',y). We consider only the case where there is an
EDB atom e(a, b) among the atoms in p such that s’ € §g(s,e), and x € V.
The other cases are similar. Then W (f) is equal to W (f-1), except that the
sequence ! (9(z'), z') - -r" (2", 9(y)) of atoms corresponding to EL (', y)
is replaced in W(f) by e(¥(x),d(x")), r'(I(z"), ') - -r" (2" ", 9(y)) corre-
sponding to Ef (z,y).

We extend h(f-1) to h(f) by mapping the current occurrence of ¥(z) to
a. Observe that, if there are other occurrences of ¥(z) in h(f-1) they are
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mapped to a as well since M is consistent with hA(f-1) and f-1 is connected.
Moreover, M, = M’ \ {(0y,b)}. Hence, h(f) is a strong containment map-
ping from W(f) to atoms in 7 and M and M, are consistent with h(f).
Moreover since the transition stays in the same node and J(x) is mapped
to a variable in g, we have that f is connected.

Inductive case 2 (“splitting” transition): If there is a “splitting” transition
from a node f tonodes f-1 and f-2 of v with v(f-1) = (g, (R(t), 5, M, M)
and v(f-2) = (g, (R(t), 8", M, M)) accepting, then, by inductive hypothe-
sis, W(f-1) consists of one sequence of atoms for each element EI'(z,y) of
B, h(f-1) is a strong containment mapping from W (f-1) to atoms in 7, M
and M are consistent with h(f-1), and f-1 is connected; similarly for f-2.

We have that 3 coincides with ' U ", except for elements E/(x,y)
in B that are replaced in ' by E®(x,9%) and in 3" by EX(vk,y). (The
case where E¥(z,0%) is in " and EX(vk,y) is in 3" is analogous.)
Then W(f) is equal to W(f-1) U W(f-2), except that, for each such
El(z,y) we have a sequence w(2*~", 2071), w(2'~!, 2¥), where w(z% !, 2071 =
re(ztt 2Y), ., rt (202 251 s the sequence of atoms in W (f-1) corre-
sponding to B (z,v%) and w(z", 2%) = ri(2" ", 2%), ..., r¥(2" ", 2) is the
sequence in W (f-2) corresponding to Ef (varv,y).

We take h(f) = h(f-1) U h(f-2). Observe that, since h(f-1) and h(f-2)

are both compatible with M and respectively compatible with A/ and MY,
both occurrences of z'~ " in w(z* ", 24" ") and in w(z*"', 2¥) are mapped to
the same variable of g. Hence, h(f) is a strong containment mapping from
W(f) to atoms in 7 and M and M, are consistent with h(f). Moreover,
since both conjuncts of the transition stay in the same node and 2! is
mapped to a variable in p, f is connected.
Inductive case 3 (“moving” transition): If there is a “downward mov-
ing” (resp., “upward moving”) transition from a node f to a node
f1 of v, with v(f-1) = (g4, (R (t%),5, M, My)) (resp., v(f-1) =
(g:(—1), (R'(t"), 8, M, M,))) accepting, then, by inductive hypothesis,
W (f-1) consists of one sequence of atoms for each element Ef(z,y) of 3,
h(f-1) is a strong containment mapping from W (f-1) to atoms in 7, M and
M, are consistent with hA(f-1), and f-1 is connected.

We take W(f) = W(f-1) and h(f) = h(f-1). Trivially h(f-1) is a strong
containment mapping from W (f) to atoms in 7 and M and M, are consis-
tent with h(f). Moreover, since all variables that occur in § and that are in
the domain of M U M, have their image in t% (resp., p’), f is connected.
Inductive case 4 (“equality checking” transition): If there is an “equality
checking” transition from a node f to a node f-1 of v, with v(f-1) =
(g9, (R(t), 5", M, M,)) accepting, then, by inductive hypothesis, W(f-1) con-
sists of one sequence of atoms for each element Ef (x,y) of 8, h(f-1) is a
strong containment mapping from W (f-1) to atoms in 7, M and M, are
consistent with A(f-1), and f-1 is connected.

For each atom EX(z, 1) in 3, we have that s € F and (x,a) and (y, a) are
in M UM, for some variable a in R(t) <= 0. Then W(f) extends W (f-1) by
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adding an equality atom 9(x) = J(y), and h(f) extends h(f-1) by mapping
the occurrence of J(z) and of ¥(y) to a. Hence, h(f) is a strong containment
mapping from W (f) to atoms in 7 and M and M, are consistent with h(f).
Moreover since the transition stays in the same node and ¥(z) and 9J(y) are
mapped to a variable in R(t) < o, we have that f is connected.

e Inductive case 5 (“mapping extending” transition): If there is a “mapping
extending” transition from a node f to a node f-1 of v, with v(f-1) =
(g, (R(t), 5, M', M,)) accepting, then, by inductive hypothesis, W (f-1) con-
sists of one sequence of atoms for each element Ef(x,y) of 8, h(f-1) is a
strong containment mapping from W (f-1) to atoms in 7, M and M, are
consistent with A(f-1), and f-1 is connected.

We take W (f) = W(f-1) and h(f) = h(f-1). Trivially h(f-1) is a strong
containment mapping from W (f) to atoms in 7 and M and M, are consis-
tent with A(f). Moreover, f is trivially connected since the transition stays
in the same node, [ remains the same, and M is smaller than M’.

Since in the initial state of Af);; we have that § = v, we have ¢ = W(e) is
an expansion of v, and h = h(e) is a strong containment mapping from ¢ to
7. The claim follows. O

Theorem 11 Let II be a Datalog program with binary EDB predicates in A
and with goal predicate (), and let T' = U;y; be a finite union of C2RPQs v;
over AT. Then I1 is contained in T if and only if

T(AZH) € Ui T(AGn)

Proof. By Lemma 3, II is contained in I' if and only if for every proof tree
T € p_trees(Q, 1) there is a 7; and an expansion ¢ of ; such that there is
a strong containment mapping from ¢ to 7. By Theorem 8 and Lemmas 9
and 10, the latter conditions is equivalent to 7(ALT) C U; T(ALy). O

This allows us to establish the main result of the paper.

Theorem 12 Containment of a (recursive) Datalog program in a union of
C2RPQs is in 2EXPTIME.

Proof. By Proposition 5, we can construct a 2ATA AB’H, whose size is expo-
nential in the size of IT and T, such that T(Af ;) = U; T(Ag ). By Propo-
sition 4, we can construct a INTA AZ{H, whose size is doubly exponential in
the size of II and I', such that a Y-labeled tree is accepted by Azfn if and
only if it is not accepted by Ag,n. By Proposition 6, we can construct a INTA
A ,ni, whose size is still doubly exponential in the size of IT and I', such that
A, accepts a Y-labeled tree if and only if it is accepted by Ag‘fﬁees but not
accepted by any of the AZj’H. By Theorem 11, A.,,; is nonempty if and only
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if 11 is not contained in I'. By Proposition 7, nonemptiness of A, can be
checked in time polynomial in its size, and hence doubly exponential in the
size of Il and I'. The claim follows. O

6 Lower Bound

Next we turn to the lower bound for containment of Datalog in unions of
C2RPQs. In [25], it is shown that containment of Datalog in unions of con-
junctive queries is 2EXPTIME-hard, by a reduction from acceptance of an
alternating EXPTIME Turing machine. The encoding in that proof uses EDB
predicates of arity different from 2, and hence does not directly apply to
containment of Datalog in unions of C2RPQs, where all EDB predicates are
binary. Nevertheless, the problem of containment of a Datalog program in a
union of conjunctive queries over arbitrary EDB predicates can be reduced to
the problem of containment of a Datalog problem in a union of conjunctive
queries over binary EDB predicates, as shown below.

Let 1T be a Datalog program with goal predicate ) over EDB predicates of
arbitrary arity, and ® a union of conjunctive queries over the EDB predicates of
IT. We construct a Datalog program I1" with goal predicate @) over binary EDB
predicates and a union of conjunctive queries ® over binary EDB predicates
as follows:

e For each EDB predicate R of arity n > 2 appearing in II or ® we consider R
in IT" as an IDB predicate, and we introduce n fresh binary EDB predicates
R;, for i € 1,...,n, which represent the components of tuples of R. Also,
the following rule is added to IT":

R(xy,...,xn) < Ri(y,z1),...,Rn(y,xn)

where y is an existential variable that represents the tuple (z1,...,x,).

e For each unary EDB predicate R appearing in IT or @, we consider R in IT'
as an IDB predicate, and we introduce a fresh binary EDB predicate R,.
Also, the following rule is added to IT":

R(z) < Ry(z,x)

e For each O-ary EDB predicate R appearing in II or ®, we consider R in IT'
as an IDB predicate, and we introduce a fresh binary EDB predicate R,.
Also, the following rule is added to II":

R + Ry(z,x)

e II' additionally contains all rules of II.
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In the following, we call the binary EDB predicates R; (resp., R, or Ry) newly
introduced in IT" fresh EDB predicates. The union of conjunctive queries @' is
obtained from & by

e replacing each atom R(z,...,z,) over an n-ary (with n > 2) predicate R
with the conjunction of atoms Ry(w, z1), ..., R,(w, z,), where w is a fresh
variable;

e replacing each unary atom R(z) with the binary atom R,(z, 2);
e replacing each 0-ary atom R with the binary atom Ry(w,w), where w is a
fresh variable.

Lemma 13 Let 11 be a Datalog program with goal predicate Q) and ® a union
of conjunctive queries, both over arbitrary EDB predicates. Let I1' and @ be
the Datalog program and the union of conjunctive queries, both over binary

EDB predicates, defined from I1 and ® as above. Then 11 is contained in @ if
and only if 1" is contained in .

Proof. “=" Assume that for each expansion tree 7 in trees(Q,II) there is a
containment mapping from some conjunctive query in ® to 7. We show that
for each expansion tree 7' in trees(Q, IT') there is a containment mapping from
some conjunctive query in &' to 7’. Since each fresh EDB predicate appears
in IT" only in the body of rules whose head is an EDB predicate of arity n # 2
of 1T or ¢, and such rules contain in their body only fresh EDB predicates,
we have that each node in 7’ containing a fresh EDB predicate is a leaf node.
Moreover, there is an expansion tree 7 in trees(Q, IT) such that 7’ is obtained
from 7 by adding for each node g of 7:

e for each EDB atom R(zi,...,x,), with n > 2, appearing in (the body
of the rule instance labeling) ¢, a child of g labeled by a rule instance
R(zq,...,7,) < Ri(y,x1),..., Ru(y, z,);

e for each unary EDB atom R(z) appearing in g, a child of g labeled by a
rule instance R(x) < R,(z,x);

e for each 0O-ary EDB atom R appearing in ¢, a child of g labeled by a rule
instance R <« Ry(z, ).

Let 7 be an expansion tree in trees(@, I1). By hypothesis, there exists a con-
tainment mapping h from some conjunctive query ¢ in ® to 7. Let ¢’ be
the conjunctive query in ®' obtained from . Consider an atom R(zy, ..., z,),
with n > 2, in ¢, and let h map such an atom to an atom R(z;,...,z,) in
a node g of 7. Let Ry(w,z1),..., R,(w, z,) be the conjunction of atoms in ¢’
corresponding to R(z1, ..., z,), where, by construction, w is a variable not ap-
pearing in any other atom of ¢'. Consider the child ¢’ of g in 7’ corresponding
to the expansion of R(zy,...,x,), and let ¢’ be labeled by the rule instance
R(zy,...,x,) < Ri(y,21),..., Rn(y,x,). Then, we can extend h so that it
maps w to y and the atoms containing w to the atoms in the body of the rule
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instance labeling ¢’. Similarly, consider a unary atom R(z) in ¢, and let h map
such an atom to an atom R(z) in a node g of 7. Let R,(z, z) be the atom in
¢ corresponding to R(z). Consider the child ¢’ of ¢ in 7' corresponding to the
expansion of R(z), and let ¢’ be labeled by the rule instance R(x) < R,(x,z).
Then, since h maps z to x, it also maps the atom R, (z, z) to R, (z, z), which is
the only atom in the body of the rule instance labeling ¢'. We can proceed in
a similar way for 0-ary atoms. It is immediate to verify that, by proceeding in
the same way for all non-binary atoms of ¢, we have that A is a containment
mapping from ¢’ to 7'

“<" Assume that for each expansion tree 7' in trees(Q,11') there is a con-
tainment mapping from some conjunctive query in @' to 7', and let 7 be
an expansion tree in frees(Q,I1). We show that there is a containment map-
ping from some conjunctive query in ® to 7. Let 7' be an expansion tree
in trees(Q,I1') obtained from 7 by adding for each node g of 7 and each
EDB atom R(zy,...,%,), with n > 2, appearing in (the body of the rule in-
stance labeling) g, a child of g labeled by a rule instance R(zq,...,x,) <
Ri(y,x1),..., R,(y, z,), where y is a different fresh variable for each atom.
Similarly for each unary and 0-ary EDB atom appearing in a node of 7. By
hypothesis, there is a conjunctive query ¢’ in ®' such that there exists a con-
tainment mapping h from ¢’ to 7’. Let ¢ be the conjunctive query in ® from
which ¢’ is derived. Consider a conjunction of atoms R;(w, z1), ..., Ry (w, 2,)
in ¢' corresponding to an atom R(z,...,z,) in ¢, where, by construction,
w is a variable not appearing in any other atom of ¢’. Let ¢ be the node
of 7 containing (in the body of the rule instance labeling ¢') the atom
Ri(y,z1) to which h maps Rj(w,z;). By construction of 7' the variable y
appears only in atoms of ¢'. Hence, the rule instance labeling ¢’ will be of the
form R(z1,...,2,) < Ri(y,x1),..., Ro(y, z,), where Ry(y,x1),..., Ru(y, z,)
are the atoms to which h maps Ry(w, z1),..., R,(w, 2,), respectively. It fol-

lows that we can map the atom R(z1,...,2,) in ¢ to the atom in the head
R(z1,...,x,) of the rule instance labeling ¢', or, equivalently, to the atom
R(z1,...,x,) in the predecessor node g of ¢’ in 7" and hence also in 7. We

can reason in a similar way for binary atoms in ¢’ corresponding to unary and
0-ary atoms of ¢. It is immediate to verify that, by proceeding as above for
all conjunctions of atoms in ¢’ corresponding to atoms of ¢ of arity greater
than 2, and for all atoms in ¢’ corresponding to unary and O-ary atoms of ¢,
we have that h is a containment mapping from ¢ to . O

Considering that the construction above is linear in II and ¢, from
2EXPTIME-hardness of containment of Datalog in unions of conjunctive
queries over arbitrary EDB predicates [25], we obtain the following result.

Theorem 14 Containment of a Datalog program in a union of conjunctive
queries, both over binary EDB predicates, is 2EXPTIME-hard.
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By Theorem 12, we get the following computational complexity characteriza-
tion.

Theorem 15 Containment of a (recursive) Datalog program in a union of
C2RPQs is 2EXPTIME-complete.

7 Conclusions

We have established decidability of containment of Datalog queries in unions
of conjunctive 2-way regular path queries, and characterized the complexity
of the problem as 2EXPTIME-complete. This is the most general known de-
cidability result for containment of recursive queries, apart from the result
in [23] for monadic Datalog. The class of union of C2RPQs has several fea-
tures that are typical of modern query languages, in particular of those for
semistructured data. Unions of C2RPQs constitute the largest fragment of
query languages for XML data [45] for which containment is known to be

decidable [34].

The 2EXPTIME upper-bound result shows that adding transitive closure to
conjunctive queries does not increase the complexity of query containment
with respect to Datalog queries, as it matches the bound obtained in [25] for
containment of Datalog queries in union of conjunctive queries. Observe that
containment in the converse direction, as well as equivalence, is undecidable al-
ready for RPQs. Indeed, universality of context free grammars can be reduced
to containment of RPQs in Datalog, by following the line of the undecidability
proof of containment between Datalog queries in [22].

Query containment is typically the first step in addressing various problems of
query processing, such as view-based query processing. One of the most impor-
tant view-based query processing tasks is view-based query answering [46,47],
where one is interested in computing the answer to a query over a global vir-
tual schema, based on the data stored in a set of materialized views, defined
also over the virtual schema. In such a setting, the typical assumption is that
views are sound, i.e., the data available in the views are a subset of the data
satisfying the corresponding view definition [47]. There is a well-known con-
nection between query containment and view-based query answering (under
sound views) [48,49], that is based on using the data in the views to construct
the body of the query on the left-hand side of containment. By exploiting
such a connection*, the results in this paper already show that view based

4 The reductions between query containment and view-based query answering
in [48] make use of constants in the query built from the views. However, it is
easy to see that, since we do not allow for inequalities in queries, the reductions can
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query answering is decidable and 2EXPTIME-complete when the views are
Datalog and the query is a union of C2RPQs. This is the most general known
decidability result for view-based query answering in the presence of recursion.
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