
Projection Pushing Revisited

EDBT 2004
Ben McMahan, Guoqiang Pan, Patrick Porter, Moshe Vardi

Rice University

March 16, 2004

Overview

• Review and Motivation

• Experimental Setup

• Structural Optimizations

• Experimental Results

• Conclusions

1

What is Query Optimization?

• Queries are written to access the data in a database.

• Queries can be transformed to logically equivalent queries

• Not all equivalent queries are equal:

– (r1 ⊲⊳ r2) ⊲⊳ ∅, vs. (∅ ⊲⊳ r1) ⊲⊳ r2
– πa(r1 ⊲⊳a r2), vs. (πar1) ⊲⊳ (πar2)

• We call a particular method of execution a plan

• Databases typically use cost-based optimization

2

What is Cost-Based Optimization?

Cost-based optimization is a search technique that requires

• A search space of plans,

• A cost estimation method for each plan, and

• An enumeration algorithm.

Typically, information about the database is used to assign a cost to each
operation.

Goal is to find an accurate cost estimation method and an efficient
enumeration algorithm to find a low cost plan

3

Problems with Cost-Based Optimization

• Problems arise when the number of joins is large

• For n joins, there are O(n!) possible plans

• Dynamic programming and the principle of optimality reduce this to
O(n2n−1)

• Thus, cost-based optimization does not scale.

4

Where Might This Be a Problem?

Queries with a large number of joins start appearing in

• Mediation systems,

• Complex views joined with other complex views, and

• Machine generated queries.

All of these domains are continually growing in use.

5

An Alternative Approach: Structural Heuristics

Structural Heuristics

• Focus on optimizing structural properties of the query

• Minimize the arity of the intermediate tables

• Constant arity bound → polynomial size bound

• Minimal arity is directly related to the treewidth of the join graph

6

• Review and Motivation

• Experimental Setup

• Structural Optimizations

• Experimental Results

• Conclusions

7

Experiment Setup

We challenged the effectiveness of cost-based optimization with

• Small databases – One table with two attributes and six tuples

• Large queries – Hundreds of joins

• Focused on Project-Join queries.

• Consider Boolean queries (output is empty or non-empty)

To achieve all this we generated queries from 3-COLOR problems.

8

3-COLOR

An instance of 3-COLOR is a

• Graph G = (V, E), |V | = n and |E| = m, and a

• Set of colors C = {1, 2, 3}.

The problem is whether or not there is a way to color V using C where for
every (u, v) ∈ E, c(u) 6= c(v).

9

3-COLOR as a Query

We define an EDGE relation containing all pairs of distinct colors:

EDGE
1 2
1 3
2 1
2 3
3 1
3 2

EDGE contains all 3-colorable colorings of an edge. Our query is then

QG = π∅⊲⊳(u,v)∈EEDGE(u, v)

10

Pentagon Example

v3v4

v5 v2

v1

A pentagon is a graph G = (V,E) where V = {v1, v2, v3, v4, v5} and
E = {(v1, v2), (v1, v5), (v2, v3), (v3, v4), (v4, v5)}

So the corresponding query would be:

QG = π∅EDGE(v1, v2) ⊲⊳ EDGE(v1, v5) ⊲⊳ EDGE(v2, v3) ⊲⊳

EDGE(v3, v4) ⊲⊳ EDGE(v4, v5)

11

Our Approach

Using PostgreSQL 7.1.3, for each graph,

• We construct an SQL query

• Run the query

• Gather results and both optimization and execution time

12

• Review and Motivation

• Experimental Setup

• Structural Optimizations

• Experimental Results

• Conclusions

13

Naive Query

The naive query is the most direct translation to SQL.

The pentagon example would yield:
SELECT 1
WHERE EXISTS (
SELECT *
FROM EDGE e1 (v1,v2), EDGE e2 (v1,v5), EDGE e3 (v2,v3), EDGE e4
(v3,v4), EDGE e5 (v4,v5)
WHERE e1.v1 = e2.v1
AND e1.v2 = e3.v2
AND e2.v5 = e5.v5
AND e3.v3 = e4.v3
AND e4.v4 = e5.v4);

14

Straightforward Query

The straightforward query explicitly lists the join order.

The pentagon example is now:
SELECT 1
WHERE EXISTS (
SELECT *
FROM EDGE e5 (v4,v5) NATURAL JOIN (

EDGE e4 (v3,v4) NATURAL JOIN (
EDGE e3 (v2,v3) NATURAL JOIN (
EDGE e2 (v1,v5) NATURAL JOIN EDGE e1 (v1,v2)))));

15

Naive vs Straightforward

• NATURAL JOIN assumes equality on same names

• Execution time the same as Naive

• Compilation time decreased by 3 orders of magnitude

• Neither naive nor straightforward plans use early projection!

– This is also true of DB2 and Oracle

16

Early Projection

Our queries have the form πv1,...,vk
(r1 ⊲⊳ . . . ⊲⊳ rm).

If a vertex vj 6∈ {rq+1, . . . , rm}, then we can rewrite the query into:

πv1,...,vk
(πlivevars(r1 ⊲⊳ . . . ⊲⊳ rq) ⊲⊳ rq+1 ⊲⊳ . . . ⊲⊳ rm)

• livevars contains all the variables except vj

• vj has been projected early

• Arity of intermediate results has been reduced

17

Early Projection Continued

Our pentagon example now looks like:
SELECT 1
WHERE EXISTS (
SELECT *
FROM edge e5 (v4,v5) NATURAL JOIN (

SELECT e4.v4, t3.v5
FROM edge e4 (v3,v4) NATURAL JOIN (

SELECT e3.v3, t4.v5
FROM edge e3 (v2,v3) NATURAL JOIN (

SELECT e1.v2, e2.v5
FROM edge e2 (v1,v5) NATURAL JOIN edge e1 (v1,v2)
) AS t4) AS t3) AS t2

);

18

Reordering Relations

Reordering relations can help us project early more aggressively. For
example,

• Let v1 be only in r1 and rm.

• Then v1 will not be projected early

• But v1 could be projected out after 1 join.

19

Greedy Heuristic

Finding an optimal relation order is hard so we permute the relations greedily

• Computing the order incrementally

• At each step, look for relation that would project early the most attributes

• To break ties, choose the relation that shares the least attributes with
the remaining relations

• Further ties are broken randomly

20

Limits?

What are the limits of early projection?

v1,v2,v5

v2,v5

v2,v3,v5

v3,v5

v3,v4,v5

v4,v5

v4,v5

v4,v5
Join Expression Tree

Pentagon Example

v1, v2 v1,v5

v2,v3

v3,v4

Edge e3

Edge e2Edge e1

Edge e5

Edge e4

21

Theoretical Results

Let joinwidth of a query Q be the smallest width of all possible join
expression trees

Then, the joinwidth of the query is the treewidth of its join graph plus one.

The join graph of a query creates a vertex for every attribute and a clique
between every relation.

Treewidth is a

• Notion that formalizes how tree-like a graph is

• Can be defined through treedecompositions

22

Central Theorem

Theorem 1: Given a project-join query Q, the joinwidth of Q is equal
to the treewidth of the joingraph of Q plus one.

Proof Sketch:

Lemma 1: Given a project-join query Q and a join expression tree JQ

of width k, there is a tree decomposition TJQ
= ((I, F),X) of the join

graph GQ such that the width of TJQ
is k − 1.

Lemma 2: Given a project-join query Q, and join graph GQ, and a tree
decomposition of GQ of treewidth k, there is a join expression tree of Q

with width k + 1

23

Bringing It All Together

Algorithms for finding small treewidths should work for query optimization.

Artificial Intellegence uses a technique called bucket elimination

• A bucket is made for each attribute in the query

• Given an order of the attributes, relations are placed into the highest
labeled bucket

• The bucket is processed and associated attribute projected out

• The results are then placed in the next highest bucket

Given an suitable order this method will obtain an optimal solution.

24

Bucket Elimination

v5v1 v2 v3 v4

Edge(v3,v4)Edge(v2,v3)Edge(v1,v2) Edge(v1,v5)
Edge(v4,v5)

25

Bucket Elimination after one step

v5v1 v2 v3 v4

Edge(v3,v4)Edge(v2,v3)Edge(v1,v2) Edge(v1,v5)
Edge(v4,v5)

{v1,v4}

26

Maximum Cardinality Search

We used the Maximum Cardinality Search (MCS) order to fuel the bucket
elimination method

• Iterating over the join graph

• Each iteration picks the attribute most connected to those already chosen

• Ties broken arbitrarily

MCS has been used successfully in constraint satisfaction

Other attribute orders are explored later in the talk

27

• Review and Motivation

• Experimental Setup

• Structural Optimizations

• Experimental Results

• Conclusions

28

Random Queries

We generate random 3-COLOR graphs using two parameters

• The order – number of vertices

• The density – number of edges / vertices

• Two distinct vertices are picked uniformally

• Edges are created, without repetition, until all edges have been generated

29

Scaling

We are concerned with two type of scalability

• Density scaling – Fix the order of the queries and increase the density

– Tests scalability over structural changes in the query
– Move from underconstrained to overconstrained instances

• Order scaling – Fix the density of the query and increase the order

– Tests tradition scalability of optimization

For each order and density, 100 graphs are generated and the median
execution time is plotted.

30

Density Scaling - Order 20 - Logscale

0 1 2 3 4 5 6 7 8 9
10

−3

10
−2

10
−1

10
0

10
1

10
2

Density

T
ot

al
 T

im
e

(s
ec

)

Straightforward
Early Projection
Reordering
Bucket Elimination (MCS)

31

Order Scaling - Density 3.0 - Logscale

10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Order

T
ot

al
 T

im
e

(s
ec

)

Straightforward
Early Projection
Reordering
Bucket Elimination (MCS)

32

Order Scaling - Density 6.0 - Logscale

15 20 25 30
10

−1

10
0

10
1

10
2

10
3

Order

T
ot

al
 T

im
e

(s
ec

)

Straightforward
Early Projection
Reordering
Bucket Elimination (MCS)

33

Structured Queries

We also used structured queries

(a) (b) (c) (d)

(a) Augmented Path (b) Ladder (c) Augmented Ladder (d) Augmented
Circular Ladder

34

Augmented Path - Logscale

5 10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Order

T
ot

al
 T

im
e

(s
ec

)
Straightforward
Early Projection
Reordering
Bucket Elimination (MCS)

35

Augmented Circular Ladder - Logscale

5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Order

T
ot

al
 T

im
e

(s
ec

)
Straightforward
Early Projection
Reordering
Bucket Elimination (MCS)

36

• Review and Motivation

• Experimental Setup

• Structural Optimizations

• Experimental Results

• Conclusions

37

Conclusions

• Early projection, applied greedily, can provide exponential improvement
over straightforward approaches

• Bucket elimination provides another exponential improvement.

• Structural heuristics can be used to optimize queries successfully

Note that our results also hold for non-Boolean queries and our methods
work for more general queries, not just 3-COLOR.

38

Future Work

• Find a framework in which to combine cost-based and structural
techniques, i.e. weighted graphs or width as a cost measurement

• Experiment on a wider variety of queries and databases

• Consider optimizations beyond Project-Join queries

• Experiment with other structural techniques, ie mini-buckets, clustering,
treewidth approximation, etc.

39

