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Abstract. Refutation proofs can be viewed as a special case of comgpraipa-
gation, which is a fundamental technique in solving comstisatisfaction prob-
lems. The generalization lifts, in a uniform way, the cortagfprefutation from
Boolean satisfiability problems to general constrainiséattion problems. On
the one hand, this enables us to study and characterize d@siepts, such as
refutation width, using tools from finite-model theory. Gretother hand, this
enables us to introduce new proof systems, based on repagisarclasses, that
have not been considered up to this point. We consider aidgreary decision
diagrams (OBDDs) as a case study of a representation classfdtations, and
compare their strength to well-known proof systems, suchsaution, the Gaus-
sian calculus, cutting planes, and Frege systems of boualtégdation-depth. In
particular, we show that refutations by ODBBs polynomiaiiypulate resolution
and can be exponentially stronger.

1 Introduction

It is well known that the satisfiability problem for Booleaarifnulas in conjunctive
normal form (CNF) can be viewed asanstraint-satisfaction problegCSP). The in-
put to a CSP consists of a set of variables, a set of possilles/dor the variables,
and a set of constaints on the variables. The question isteordime whether there is
an assignment of values to the variables that satisfies tlea gionstraints. The study
of CSP occupies a prominent place in artificial intelligenoe computer science, be-
cause many algorithmic problems from a wide spectrum ofsacaa be modeled as
such [Dec03]. These areas include temporal reasoningsfbekintenance, machine
vision, scheduling, graph theory, and, of course, propmsi logic. Since constraint-
satisfaction problems constitute a natural generalinatioBoolean satisfiability prob-
lems, itis natural to ask for proof systems that generatizesystems for propositional
logic to CSP. Such systems would be used to refute the shtlgfiaf an instance of a
constraint-satisfaction problem, much in the same wayrésgilution is used to refute
the satisfiability of a CNF-formula.
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One of the goals of this paper is to introduce a natural andrdaal way of defin-
ing a proof system for every constraint-satisfaction peofl In order to achieve this,
first we need a unifying framework for representing such peots. This was achieved
by Feder and Vardi [FV98], who recognized that essentidllgxamples of CSPs in
the literature can be recast as the following fundamengglahic problem, called the
HOMOMORPHISM PROBLEM: given two finite relational structure& andB, is there
a homomorphisnt : A — B? Intuitively, the structureA represents the variables
and the tuples of variables that participate in constrathesstructuréB represents the
domain of values, and the tuples of values that these camstréuples of variables are
allowed to take, and the homomorphisms fraomo B are precisely the assignments
of values to variables that satisfy the constraints. Fotaimse, the 3-OLORABILITY
problem coincides with the problem of deciding whetherétisia homomorphism from
a given graphG to K3, whereKs is the complete graph with three nodes (the triangle).
The uniform version of the HMOMORPHISM PROBLEM, in which both structurea
andB are given as input, is the most general formulation of thestraimt-satisfaction
problem. Interesting algorithmic problems, however, asse by fixing the structure
B, which sometimes is called themplate structureThus, the resulting problem, de-
noted byCSP(B), asks: givemA, is there a homomorphism frod to B? Note that
CSP(Ks3) is precisely the 3-OLORABILITY problem; more generalyfoSP(Ky,) is
thek-COLORABILITY problem, wherd;, is the complete graph witk-nodesk > 2.

With constraint-satisfaction problems presented as hoonphism problems in a
unfying way, we are closer to our first goal of defining canahjaroof systems. The
approach we take is via yet another interpretation of CSRstithe in terms of database
theory, building upon the homomorphism framework. As pedhut in [GJC94], every
constraint can be thought of as a table of a relational datglend the set of solutions
to a CSP can be identified with the tuples in jibi@ of all constraints. This fruitful con-
nection between CSPs and database theory is explored furtl&v00a]. Now, a CSP
instance is unsatisfiable precisely when the join of the traimgs is empty. We adopt
this approach and define@SP(B) refutation of an instance\ to be a sequence of
constraints ending with the empty constraint, such thatyesenstraint in the sequence
is an initial constraint, the join of two previous constiairthe projection of some previ-
ous constraint, or the weakening of some previous constraiojection and weakening
are not strictly necessary, but provide a versatile tootdducing the complexity of the
intermediate constraints. Note that the join is a form ofstint propagation, since
it allows us to derive new constraints implied by the pregiames. See the work by
Freuder [Fre78] for the first theoretical approach to caistmpropagation.

The proof systems obtained this way are sound and completeffstraint satisfac-
tion. We embark on the investigation of their general prtipstby focussing first on the
concept ofrefutation width which is the maximum arity of the constraints in a refuta-
tion. Bounding the arity of the constraints generated dytite execution of constraint
propagation algorithms has already played a crucial roteérdevelopment of the the-
ory of CSPs, as a method to achieve tractability [Fre82,K@B87]. For example,
various concepts of consistency popularized by the Al conitguely on it [Dec03].
Following the ideas in [FV98,KV00a,AD03], we are able to whitat the minimal
refutation width of a8CSP(B) instanceA is characterized by a combinatorial game in-
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troduced in the context of finite-model theory. In turn, ag@illowing [FV98,KV00a],
this leads us naturally to considering the treewidth of tie¢dance as a parameter. As a
result, we obtain a deeper understanding and also a pureipioatorial characteriza-
tion of refutation width.

CSP refutations are perhaps too general to be of practieallin rules are too gen-
eral and the constraints, if represented explicitly, mayolodarge. Hence, we propose a
syntacticcounterpart to general CSP refutations, in which all thest@ints are some-
how succintly represented. Technically speaking, we dmrsepresentation classes for
the constraints. Some examples include clauses, linealitgs over a finite field, lin-
ear inequalities over the integers, decision trees, datiiagrams, and so on. With this
new formalism, CSP proofs become purely syntactical objetbser to their counter-
parts in propositional logic. As a case study, we investighé proof system obtained
by using ordered binary decision diagrams (OBDDs) as ouresgmtation class for
constraints. OBDDs possess many desirable algorithmjoguties and have been used
successfully in many areas, most notably in formal verifirafsee [Bry92,BCM 92)).
We compare the strength of refutations by OBDDs with otheppsystems for propo-
sitional logic. We show that OBDD-based refutations polyimadly simulate both reso-
lution and the Gaussian calculus; moreover, they are exyiatly stronger than either
of these systems, even when the weakening rule is not alldfve® make strong use
of weakening, then refutations by OBDDs can polynomialiydate the cutting planes
proof system with coefficients written in unary (calléd”* in [BPR97]). In partic-
ular, OBBDs provide polynomial-size proofs of the pigeolghprinciple. This shows
already that refutations by OBDDs can be exponentiallyngjen than resolution, and
even Frege (Hilbert-style) systems with formulas of bouwhaléernation-depth, because
the pigeonhole principle is hard for them [Hak85,Ajt88,B182]. Finally, we observe
that for a particular order of the variables, refutations®@®DDs have small commu-
nication complexity. By combining this with known techn&giabout feasible interpo-
lation [IPU94,Kra97], we establish that OBDD-based refota have polynomial-size
monotone interpolants, for a particular order of the vadgabThis gives exponential
lower bounds for a number of examples, including the cligakring principle, still
for that particular order. Whether the restriction on thdesris necessary remains an
interesting open problem.

2 Preliminaries

Constraint-satisfaction problems.A relational vocabularyr is a collection ofelation
symbolsR, each of a specifiedrity. A o-structure A consists of auniverseA, or
domain and for eachi € &, aninterpretationkR“ C A", wherer is the arity of &.

Let B be a finites-structure. We denote bg'SP(B) the class of all finiter-
structuresA such that there is a homomorphism fronto B. Recall that a homo-
morphism is a mapping from the universeAfto the universe oB that preserves the
relations. As mentioned in the introduction, ed¢iP (B) is a constraint-satisfaction
problem. The structur® is called thetemplate structureLet us discuss how 3-SAT
can be modeled by a particul&SP(B). This will be of help later in the paper. The
relational vocabulary consists of four ternary relatiomépls { Ro, Ry, Rs, R} rep-
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resenting all possible types of 3-clauses: clauses withagations, clauses with one
negation, clauses with two negations, and clauses witle thegations. The template
structureT has the truth tables of these types of claude®: = {0,1}3 — {000},
RT = {0,1}% - {100}, RT = {0,1}> — {110}, andRY = {0,1}3 — {111}. Every
3-CNF formulay gives rise to ar-structureA , with universe the set of variables of
and relations encoding the clausespfor instanceR?*’ consists of all triplegz, y, z)

of variables ofy such that(—z V y V z) is one of the clauses @f. Thus,CSP(T) is
equivalent to 3-SAT, since is satisfiable if and only if there is a homomorphism from
A,t0T.

Pebble gamesThe existentialk-pebble gamesvere defined in [KV95,KV00a]. The
games are played between two players, the Spoiler and théichigy, on twoo-
structuresA andB according to the following rules. Each player has a sét pébbles
numbered(1,..., k}. In each round of the game, the Spoiler can make one of two dif-
ferent moves: either he places a free pebble on an elemeheafdmain ofA, or he
removes a pebble from a pebbled elemenfofTo each move of the Spoiler, the Du-
plicator must respond by placing her corresponding pebiée an element oB, or
removing her corresponding pebble frd respectively. If the Spoiler reaches a round
in which the set of pairs of pebbled elements is not a partbah@morphism between
A andB, then he wins the game. Otherwise, we say that the Duplivdtarthe game.
The formal definition can be found in [KV95,KV00a], and thes# relationship be-
tween existential pebble games and constraint-satiefaptioblems was discussed at
length in [KVOOD].

Treewidth. Thetreewidthof a graph can be defined in many different ways [Bod98].
One way is this. The treewidth of a graghis the smallest positive integérsuch that

G is a subgraph of a-tree, where &-tree is defined inductively as follows: tiet 1-
cliqueKy; is ak-tree, and ifG is ak-tree, then the result of adding a new nod&€ito
that is adjacent to exactly the nodes ot-glique of G (thus forming a (k+1)-clique)

is also ak-tree. TheGaifman graplof a structureA is the graph whose set of nodes is
the universe ofA, and whose edges relate pairs of elements that appear intspiae
of a relation ofA.. Thetreewidthof a structure is the treewidth of its Gaifman graph.

3 Proof Systems for CSPs

Notions from Database Theory.A relation schemaR(z1, ..., zx) consists of aela-
tion nameR, and a set oéttribute names:, ..., z;. A database schemais a set of
relation schemas. felation conforming witha relation schem#(z1, ..., z;) is a set
of k-tuples. Adatabase ovea database scherpais a set of relations conforming with
the relation schemas in In other words, a database oveis as-structure, except that
the universe of the structure is not made explicit. In thausggwve often conflate the
notation and use the same symbol for both a relation schetha eglation conforming
with that schema.

We usex to denote a tuple of attribute names,, . .., x;) and also to denote the
set{xz1,...,zr}. It will be clear from context which case it is. L&t be a relation
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conforming with the relational schemBi(x). Let y C x be a subset of the set of
attribute names. Thprojectionof R with respect toy is the relation whose attribute
names arey, and whose tuples can be extended to tupleB.ifWe denote itry (R).
Let R and S be relations conforming with relational schemAs$x) and S(y). The
relational join of R and .S, or simplyjoin, is the largest relatioff” whose attribute
names arex Uy, and such that,(7) C R andw,(T) C 5. We denote it byR X S.
Joins are commutative and associative, and can be exteadedarbitrary number of

relations.

Notions from CSPs.Let o be a relational vocabulary. Lét andB be twoo-structures.
A k-ary constraintis a pair(x, R), wherex is ak-tuple of distinct elements of the uni-
verse ofA, andR is ak-ary relation over the universe ®&. The constrain{x, R) can
be interpreted as a pair formed by a relation schéti@) and a relatiom? conforming
withit. Here,x is the set of attribute names. Thus, it makes sense to talk fdias and
projections of constraints. We say that a constréntR) is asupersetor weakening
of another constrairlty, S) if x = y andR D 5.

If there is a homomorphism fromA to B, then we say that the instanee of
CSP(B) is satisfiable otherwise, we say that it isnsatisfiableRecall from Section 2
that these definitions generalize Boolean satisfiabilityamsatisfiability of 3-CNF for-
mulas. If a CSP instance is unsatisfiable, its satisfiabitidy berefuted We are inter-
ested inrefutationsby means of joins, projections, and weakening. Here, caimtsr
(x, R) are viewed as relational schemBsx) with a relationR conforming with it as
suggested in the preceding paragraph.

Definition 1 (CSP Refutation).Let A and B beo-structures. ACSP(B) proof from
A is a finite sequence of constraints, R) each of which is of one of the following
forms:

1. Axiom:(x, RB), whereR € o andx € R*

2. Join:(x Uy, R M S), where(x, R) and(y, S) are previous constraints.
3. Projection:(x — {x}, mx_{}(R)), where(x, R) is a previous constraint.
4. Weakening(x, S), where(x, R) is a previous constraint an& C S.

A CSP(B) refutation ofA is a proof whose last constraint has an empty relation.

Note that the projections eliminate one variable at a time.9a¥ that the variable
is projected out. The following simple result states thaPCG&futations form a sound
and complete method for proving that a given instance of a S$satisfiable. The
fact that CSP can be reduced to a join of constraints is meadialready in [GJC94].

Theorem 1 (Soundness and Completenest)et A and B bes-structures. ThenA
has aCSP(B) refutation if and only if4 is unsatisfiable ifCSP(B). In fact, axioms
and joins alone are already enough to refute an unsatisfietsiance.

Due to space limitations, we need to omit most proofs in tkision of the paper.
The proof of Theorem 1 shows that refutations need not beargdr than linear in the
number of constraints of the CSP instance. However, thafriteader may observe
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that the intermediate constraints may be arbitrarily caxpOn the other hand, the
rules of projection and weakening can be used to lower thigadexity when necessary.

It will become clear later on how this is of any help in applioas. At this point, let us
introduce a formalism to measure the complexity of the metiate constraints. A-

ary constraintx, R) can be identified with a Boolean-valued functipn B* — {0,1}

by letting f(a) = 1 if and only ifa € R (in other words, this is theharacteristic
function of the relationR). Now, functions of this sort can be represented in various
ways by means of representation classes.

Definition 2 (Representation Class)Let B be a finite set. A representation class for
Boolean-valued functions with domabf is a triple R = (Q, I, S), whereQ is a
set, called the set of representatiorisis a mapping from to the set of functions
f: B¥ = {0,1} called the interpretation, and is a mapping fronf) to the integers,
called the size function.

To be useful for CSP refutations, representation classagldisatisfy certain regu-
larity conditions, such as being closed under joins andgata)ns. In addition, the size
function should capture the intuitive notion@dmplexityof a representation. There are
many examples of representation classes in the litergtarécularly when the domain
Bis Boolean, thatisB = {0, 1}.

Examples.Let B = {0,1}, and letA = {zy,...,2,} be a set of propositional vari-
ables. Clauses ovet form a representation class. The interpretation of a cléitee
obvious one, and we may define the size of a clause by the nuhbitesrals in it. A
clauseC' can be thought of as a constraist, R), wherex is the set of variables in
C' (not literals), andR is the set of truth assignments to the variables that satiefy
clause. Unfortunately, clauses are not closed under jtiasijs, the join of two clauses
is not necessarily a clause. Nonetheless, clauses arel diosker theresolution rule
which can be seen as a combination of one join and one projeéee also [DvB97]).
Indeed, ifC'v z and DV —z are clauses, then thesolventlauseC' v D is precisely the
result of projecting: out of their join. We exploit and elaborate on this connattiath
resolution in Section 5. Binary decision diagrams (BDDsj,a branching programs
(BPs), also form a representation class (see section 5 foniader of the definitions).
The interpretation of a BDD is the obvious one, and we may défesize by the num-
ber of nodes of its graph. BDDs are closed under joins anceptigins. In fact, BDDs
are closed under all operations, since BDDs can repreddddalean functions. More-
over, when an order on the variables is imposed, the reptasem of the join can be
obtained in polynomial time. We will discuss these issueSention 5. Linear inequal-
ities Y, a;z; < ao, for integersz;, also form a representation class. The interpretation
of 3", a;z; < ag is ak-ary Boolean-valued functiofi : B* — {0,1}, wherek is the
number of variables, defined b§(b,...,b;) = 1ifand only if Y, a;b; < ao. The
size of a linear inequality may be defined by the number of hésded to represent
thek + 1 coefficients, or byig + >, a; if the coefficients are represented in unary. As
was the case with clauses, linear inequalities are notdlosder joins. Representation
classes can also be used to represent functions3* — {0, 1} with non-Boolean
domainB. As long asB is finite, BDDs form an appropriate example. The particular
case of (non-binary) decision trees is also a good example.
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The notion of a representation class suggests a syntactitexpart of the general
notion of CSP refutation. Moreover, it also suggests a wayotand the complexity of
the intermediate relations in a CSP refutation. Recalltatvidth of constraingx, R)
is the same as its arity, that is, the length of the tuple

Definition 3 (Complexity Measures).Let B be ac-structure. LetR = (@, I, S) be a
representation class for Boolean-valued functions on ttiearse ofB. LetCy, ..., C,,
be aCSP(B) proof, and letr; € () be a representation of the constraifit. We say
thatry, ..., r, is anR-proof. Its length isn, its size isS(r1) + - - - + S(ry ), and its
width is the maximum width &f,, ..., C,,.

Itwas mentioned already that a representation class sksatigly certain regularity
conditions. The actual conditions depend on the applinaichand. One particularly
useful property is that the representation of a join (prigec weakening) be com-
putable in polynomial time from the representations of tieeig constraints. In our
intended applications, this will indeed be the case.

4 Refutation Width and Treewidth

Characterization of refutation width. Width has played a crucial role in the develop-
ment of the theory of CSPs [DP87]. Part of the interest comen fhe fact that a width
upper bound translates, for most representations, to absiaad on individual con-
straints. This is true, for example, for explicit represgian and for BDDs. In the proof
complexity literature, Ben-Sasson and Wigderson [BSW0&lved it as a complexity
measure for resolution. Here, we adopt the methods for ClsRat@ns.

Theorem 2. Let A andB be two finiter-structures. The following are equivalent:

1. A has aCSP(B) refutation of widthk.
2. The Spoiler wins the existentialpebble game oA andB.

An intimate connection between pebble games and the nottistnomg consistency
[Dec92] was established in [KV0ODb]. This entails an intimabnnection between the
concepts of refutation width and the concept of strong ctescy. Specifically, it fol-
lows from the results in [KV0O0b] and the above theorem thdtas aCSP(B) refuta-
tion of width & precisely when it is impossible to establish strdngonsistency foA
andB.

Next we turn to studying the effect of the treewidth of theamceA on the width
of the CSP refutations. We will need the following result dadalmau, Kolaitis and
Vardi:

Theorem 3 ([DKVO02]). Letk > 2, let A be a finites-structure of treewidth less than
k, and letB be a finiter-structure. Then the following statements are equivalent:

1. There is a homomorphism franto B.
2. The Duplicator wins the existentiaipebble game oA andB
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Itis immediate from Theorems 2 and 3 that\ifis unsatisfiable i©SP(B) and has
treewidth less thai, thenA has aCSP(B) refutation of widthk. In fact, this result
remains true in a more general situation. A substruc€ud A is called acoreof A if
there is a homomorphism frod to C, but, for every proper substructu€g of C, there
is no homomorphism from to C’. Itis known [HN92] that every finite structurk has
a unigue core up to isomorphism, denoted:bye( A ), and thatA is homomorphically
equivalent tocore(A). In the context of database theory, the treewidth of the obre
A captures exactly the smallest numbiesuch that the canonical conjunctive query
Q* can be expressed in the existential positive fragment dfdirder logic with
variables [DKV02, Theorem 12]. Now, back to refutationsAifis an unsatisfiable
instance ofCSP(B) and the core ofA has treewidth less thak, then A also has a
CSP(B) refutation of widthk. Indeed, ifA is an unsatisfiable instance 65P(B),
so iscore(A) because they are homomorphically equivalent; moreovesyé{ A) has
treewidth less thaf, thencore(A ) has aCSP (B) refutation of width less thak. Since
core(A) is a substructure oA, a CSP(B) refutation ofcore(A) is also aCSP(B)
refutation ofA.

One may wonder whether the converse is true. Is the treewidthe core ofA
capturing the width of the refutations &? Unfortunately, the answer turns out to
be negative for rather trivial reasons. Tak@asuch thatCSP(B) can be solved by
a k-Datalog program for some fixel. For example, leB = K, so thatCSP(B)
becomes 2-GLORABILITY, which is expressible in 3-Datalog. Take a gragtwhich
is not 2-colorable. Hence, the Spoiler wins the existentipébble game o andK,
[KV0O0a]. Now just add an arbitrarily large clique 8, that is, letG’ = G U Ky, for
some large:. There still exists &SP (B) refutation of G’ of width 3, but the core of
G’ has treewidth at leagt— 1. This counterexample, however, suggests that something
more interesting is going on concerning the relationshigvben existentiak-pebble
games and treewidth

Theorem 4. Let & > 2, let A and B be two finites-structures. Then the following
statements are equivalent:

1. The Duplicator wins the existenti@ipebble game oA andB.

2. If A’ is a structure of treewidth less th&nand such that there is a homomorphism
from A’ to A, then the Duplicator wins the existential k-pebble gameAdrand
B.

Proof sketch(i) = (ii) is easy. (ii)= (i). Let Pg be thek-Datalog program that ex-
presses the query: “GiveAr, does the Spoiler win the existentialpebble game o
andB?” [KV00a]. Assume that the Spoiler wins the existentighebble game or
andB. HenceA satisfiesPg, hence it satisfies one of the stages of#HRatalog pro-
gramPg. Each such stage is definable by a union of conjunctive gaiexéeh of which
can be written in the existential positive fragment of fiostler logic with% variables.
HenceA satisfiesQA', whereA’ is a structure of treewidth less thanHence, there is
a homomorphismh from A’ to A. But alsoA’ satisfiesPg, hence the Spoiler wins the
existentialk-pebble game oA’ andB. O

Now we combine Theorems 2, 3 and 4 to obtain a purely combilzhttharacteri-
zation of when a structure has a CSP refutation of a certadithwi
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Corollary 1. Letk > 2, let A and B be two finites-structures. The following are
equivalent:

1. A has aCSP(B) refutation of widthk.
2. There exists a structurd’ of treewidth less thah and such that there is a homo-
morphism fromA’ to A, and A’ is unsatisfiable irCSP(B).

Note that the characterization of refutation width is siateterms of treewidth and
homomorphisms and does not mention refutations at all. Eetdd that the structure
in (2) can be large, so Corollary 1 does not yield any compyexound for deciding
whetherA has aCSP(B) refutation of width%. As it turns out, it follows from Theo-
rem 2 and the result in [KP03], that this problem is EXPTIME-pbete.

Small-width proof-search algorithms.Next we study the complexity of finding a sat-
isfying assignment, or refuting the satisfiability, of astanceA of CSP(B) when we
parameterize by the treewidthof A. The decision problem has been studied before in
certain particular cases. Whenis bounded by a constant, the problem can be solved
in polynomial time [DP87,Fre90]. WheB is a fixed structure, Courcelle’s Theorem
[Cou90] implies that the problem can be solved in ti2%*)n, wheren is the size of

A. Indeed, ifB is fixed, then satisfiability irCSP(B) can be expressed in monadic
second-order logic, so Courcelle’s Theorem applies. Weicen the case in whicB
andk are not fixed, and also the problem of finding a satisfyingggssent, or a refu-
tation. In the particular case of BooleBnand resolution refutations, a related problem
was studied in [AR02] where branchwidth was used insteadeefnidth. Our proof is
more general, rather different, and perhaps simpler.

Theorem 5. The problem of determining whether a structireof treewidthk is satis-
fiable inCSP(B) can be solved by a deterministic algorithm in tif&*) ;m© (%), (1)
wheren is the size ofA andm is the size oB. In particular, the algorithm runs in
polynomial time whert = O(log n/logm). Moreover, ifA is satisfiable, the algo-
rithm produces a homomorphisin: A — B, and if A is unsatisfiable, it produces a
CSP(B) refutation of widthk.

Proof sketchThe idea is to build an existential positive sentegicavith k£ variables,
that is a rewriting of the canonical que€y®. This takes time polynomial in the tree-
decomposition ofA., which can be found in tima®#)n°(1) Then we evaluateb on

B bottom up, from inner subformulas to the root. Since eacHmuiula involves at
most k variables, this takes time©(*) times the size of the formula, which is time
20(K)mO*) (M) overall. Sincey = @4, we have thaB satisfiesy if and only if
there exists a homomorphism frofto B. O

5 Refutations by OBDDs: a case study

Regularity properties of OBDDs. In this section we study the effect of usinglered
binary decision diagramas a representation class for constraints. We focus on the
Boolean cas®® = {0, 1}.
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For the history on the origins of binary decision diagramaniehing programs, and
ordered binary decision diagrams we refer the reader touheyg by Bryant [Bry92].
Here are the definitions. Lety, ..., z, ben propositional variables. Adinary deci-
sion diagram(BDD), or branching program(BP), represents a Boolean function as a
rooted, directed acyclic grap#. Each non-terminal node of G is labeled by a vari-
ablev(u) € {#1,...,2,}, and has arcs toward two childrefu) and f(u), referred to
as the true and the false children respectively. Each teimiode is labeled or 1. For
a truth assigment to the variables, . . ., z,,, the value of the function is determined by
following the path through the directed graph, from the tocd terminal node, accord-
ing to the labels of the nodes and the values to the variablessize of a BDD is the
size of the underlying grapt&. An ordered binary decision diagrag®BDD) is a BDD
in which labeled paths are consistent with a specific totdéog. over the variables.
More precisely, for an OBDD we require that the variable ladgea non-terminal node
be smaller than the variables labeling its non-terminaldehi, according to a fixed
order over the variables.

The main property of OBDDs is that, in their reduced form,ytlaee canonical
meaning that for a given order, two OBDDs for the same fumctige isomorphic. An
immediate consequence is that testing for equivalence @f3®DDs can be solved in
time polynomial in their size. Most interesting for us is et that representations of
joins and projections are computable in polynomial time datermining whether an
OBDD is a weakening of another is decidable in polynomiaktim

It follows from this that given a CSP refutatiarh, . . ., C,, with the constraints
represented by OBDDs, the validity of applications of tHe jule, the projection rule,
and the weakening rule, can be checked in polynomial timeréfhre, refutations by
OBDDs when applied to 3-SAT (a particuldsP (B), see below) form a proof system
in the sense of Cook and Reckhow [CR79].

Strength of refutations by OBDDs. Let us compare the size of CSP refutations by
OBDDs with other well-known proof systems for propositibiogic. Recall from Sec-
tion 2 how 3-SAT is represented as’&P(B) problem. The template structure B
and its vocabulary consists of four ternary relatidi®y, Ri, R2, Rs}, one for each
type of 3-clause. Thus, structures for this vocabulary a@N¥- formulas. Arefutation

by OBDDsof a 3-CNF formulaA is a refutation ofA in CSP(T) when constraints are
represented by OBDDs for a fixed total order of the varialf#éze, length and width of
refutations by OBDDs are defined according to Definition 3éct®n 3.

ResolutionThe resolution rule is very simple: frofi v z and D v —z, deriveC' v D,
whereC' and D are clauses in whiclh does not occur. The goal is to derive the empty
clause from a given set of initial clauses. The length of altg®n refutation is the
number of clauses that are used in it. The size of a resoluéfuiation is the total
number of literals that appear in it. There are two key obetions that concern us
here. The first is that every clause has a small equivalent@Ber all orders of the
variables. The second observation is that D can be expressed in terms of one join
and one projection fromd' v «z and D Vv —z (see also [DvB97]). We use both facts for
the following result whose proof will be included in the fplhper.
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Theorem 6. Let A be a 3-CNF formula on variables. IfA has a resolution refutation
of lengthm, then A has a refutation by OBDDs of lengthn and sizeO(mn?), even
without using the weakening rule and for every order of thiéaddes. Moreover, there
is a polynomial-time algorithm that converts the resolatiefutation into the refutation
by OBDDs.

We will see below that, in fact, refutations by OBDDs are exgtially stronger
than resolution. As an intermediate step we move to a diffea@SP: systems of equa-
tions overZzs,.

Gaussian calculu®ne nice feature of OBDDs is that they give a uniform framewor
for defining all types of constraints. Consider now the CSfihdd by systems of linear
equations over the two-element fiédd, with exactly three variables per equation. That
is, the vocabulary contains two ternary relation symbisand R, representing the
equationst + y + z = 0 andz + y + z = 1 respectively. The template structure
S contains the truth tables of these equations: thdtSis= {000, 011,110,101} and
R$ = {001,010, 100,111}. Now CSP(S) coincides with systems of equations over
Z,. The standard method for solving systems of equations is&au elimination. In
fact, Gaussian elimination can be used to refute the s&iléfjeof systems of equations
by deriving, for example) = 1 by means of linear combinations that cancel at least
one variable. This has led to proposing the Gaussian calesla proof system [BSI99].
Let us see that refutations by OBDDs can polynomially sineuia Perhaps the most
interesting point of the proof is that we actually show thaakening is not required,
which is not immediately obvious.

Theorem 7. Let A be a system of equations ovigg with exactly three variables per
equation. IfA has a Gaussian calculus refutation of lengththenA has a refutation

by OBDDs inCSP(S) of length2m and sizeO(mn?), even without using the weak-
ening rule and for every order of the variables. Moreoveeréhis a polynomial-time
algorithm that converts the Gaussian calculus refutatimio ithe refutation by OBDDs.

We can now use this result to conclude that for 3-CNF formuleitations by
OBDDs are exponentially stronger than resolution. Congliestandard translation of
a linear equation: + y + z = a of Z, into a 3-CNF formula. Namely, fox = 1 the
3-CNF formulais

(xVyVz)A(eVoyV-oz)A(meVyV-oz)A(-eV-oyVz),

and the formula folw = 0 is similar. For a system of equations ov&s with three
variables per equatioA, let T(A) be its translation to a 3-CNF formula. It is not hard
to see that ifA has a refutation by OBDDs if¥SP(S) of lengthm, thenT(A) has
a refutation by OBDDs irCSP(T) of lengthO(m). The idea is that the join of the
OBDDs for the clauses defining an equatior- y + z = «a is precisely an OBDD
representing the equatiory- y + » = a. Therefore, one refutation reduces to the other.
The particular system of equations knownTaitin contradiction§Tse68] is ex-
ponentially hard for resolution. This was shown by Urquljahtg87] and was later
extended by Ben-Sasson [BS02] who showed the same resutvéoy Frege sys-
tem (Hilbert-style system) restricted to formulas of boeddlternation-depth. This
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establishes that refutations by OBDDs are exponentialbngier than resolution. For
bounded alternation-depth Frege systems, it shows thainre sases refutations by
OBDDs might be exponentially stronger. In the next sectiensee that refutations by
OBDDs and bounded alternation-depth Frege systems armparable.

Cutting planesWe now show that, in the presence of weakening, refutatipi@®DDs
polynomially simulate the cutting planes proof system witiall coefficients. Itis well-
known that clauses can be expressed as linear inequaligeth® integers. For example
the clauser v —y Vv z can be expressed hy+ (1 — y) + z > 1, or equivalently,
z —y+ 2z > 0. Therefore, a CNF formula translates into a system of inkiiges
over the integers in a natural way. The cutting planes prgstiesn was introduced in
[CCT87]. The lines in the proof are linear inequalities otrex integers. There are three
rules of inference: addition, scalar multiplication, anteger division. The only rule the
requires explanation is the integer division. Frdm)(c - a;)z; > ao derive} ", a;z; >
[ao/c]. Intuitively, if all coefficients except the independentrnteare divisible bye,
then we may divide all over, and round-up the independemnt.t&he rule is sound
on the integers, meaning that if the's take integer values that satisfy the hypothesis,
then the conclusion is also satisfied. The goal of the systemderive a contradiction
0 > 1 from a given set of linear inequalities. For refuting 3-CN¥fmulas, each clause
is viewed as a linear inequality as described before.

In order to measure the size of a proof we need to specify andamg for the
inequalities. When the coefficients are encoded in unagysistem has been named
C'P* and studied in [BPR97]. We see that refutations by OBDDs cdynpaially
simulateC' P*. As it turns out, the rule of weakening is strongly used h&vaether
weakening is strictly necessary remains as an intriguirggngpoblem.

Theorem 8. Let A be a 3-CNF. IfA has aC P* refutation of lengthm and sizes,
then A has a refutation by OBDDs of lengthn and sizes®"), for every order of
the variables. Moreover, there is a polynomial-time al¢fom that converts thé' P~
refutation into the refutation by OBDDs.

One consequence of this is that thigeonhole principlewhen encoded proposi-
tionally as an unsatisfiable 3-CNF formula, admits polyrairsize OBDD refutations.
This follows from the known polynomial-size proofs of thegponhole principle in
cutting planes [CCT87]. In contrast, the pigeonhole ppierequires exponential-size
refutations in resolution [Hak85]. It would be good to findieedt construction of the
polynomial-size OBDD proof of the pigeonhole principle.

Interpolation. Craig’s Interpolation Theorem in the propositional segtia this. Let
A(x,y) andB(y, z) be propositional formulas for whick, y andz are pairwise dis-
joint. If A(x,y) A B(y,z) is unsatisfiable, then there exists a formalgy) such that
A(x,y) A =C(y) andC(y) A B(y, z) are both unsatisfiable. The promisédy) is
called aninterpolant

Interpolation has been used in propositional proof coniptes a method for lower
bounds. Following earlier working starting in [IPU94,BPR9R}ajicek [Kra97] sug-
gested the following approach. Suppose we are given a tefotaf A(x, y) A B(y, z).



Constraint Propagation as a Proof System 13

Suppose, further, that we are able to extract an interpdlény by manipulation from
the proof. Then, lower bounds for the complexity of the ipt#ants give lower bounds
for the refutations. This idea has been used successfully fimmber of proof systems
including resolution and cutting planes (see [IPU94,BPRE0OK,Pud97]). The fea-
sible interpolation of resolution has been recently used/givillan [McMO03] as an
effective abstraction technique in symbolic model chegkin

Our aim is to discuss the fact that refutations by OBDDs haesible interpolation
for certain orders of the variables. Following the machyndeveloped in [IPU94], it is
enough to observe that evaluating an OBDD requires smalimomcation complexity
for nice orders. We omit further details in this version atatesthe final result without
proof. Thenarrownes®f an OBDD is the maximum number of nodes in a level.

Theorem 9. LetF = A(x,y) A B(y,z) be an unsatisfiable 3-CNF formula, and let
n = |y|. If F has an OBDD refutation of length with OBDDs of narrowness bounded
by ¢, and with an order that is consistent with< y < z, thenF has an interpolant
circuit of sizeO(c?(m + n)). In particular, if the size of the refutation is then the size
of the interpolantis® (V). In addition, if A(x, y) is monotone ity, then the interpolant
circuit is monotone.

Let us mention that the monotone feasible interpolatiorefdtations by OBDDs
establishes a separation from Frege systems with formdldmwnded alternation-
depth. It is known that monotone interpolants for such sgsteequire exponential-size
[Kra97]. This, together with the results of previous setticestablishes that refutations
by OBDDs are incomparable in strength with Frege systemsahded alternation-
depth.

6 Concluding Remarks

Viewing constraint propagation as a proof system lifts rommplexity from propo-
sitional logic to all constraint-satisfaction problem#iefe are many questions that re-
main open from our work.

First, it is necessary to have better understanding of tleeaiothe weakening rule.
We know itis not needed to achieve completeness, not evée iteise of restricted refu-
tation width in Theorem 2. It remains an open problem to aweilee whether refutation
by OBDDs without weakening can polynomially simulaté’* refutations. Clarifying
the role of weakening is also important for algorithmic apgtions. Second, the proof
complexity of refutations by OBDDs needs further developtn®ne problem that is
left open is to find a non-trivial lower bound for the size ofutations by OBDDs
that holds for every order of the variables. Another probteat is left open is whether
OBDD-based refutations polynomially simulate cuttingpg@a with coefficients written
in binary. Are OBDD-based refutations automatizable indéyese of [BPRO00]? Can we
use the feasible interpolation of OBDD-based refutatioran effective manner analo-
gous to that of McMillan [McMO03]?

Finally, it would be good to find practical decision proceskibased on CSP proofs,
the same way that the DPLL approach is based on resolutione $oogress in this



14 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi

direction is reported in [DR94], which reports on SAT-selgiusing directional resolu-
tion, and in [PV04], which reports on SAT-solving using OBiased refutations. This
could lead to CSP-solvers that deal directly with the CSRaims#ts, avoiding the need
to translate to a propositional formula and using a SAT-so&s it is sometimes done.
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