
Constraint Propagation as a Proof System

Albert Atserias?1, Phokion G. Kolaitis??2, and Moshe Y. Vardi? ? ?31 Universitat Politècnica de Catalunya, Barcelona, Spain2 University of California, Santa Cruz, USA3 Rice University, Houston, USA

Abstract. Refutation proofs can be viewed as a special case of constraint propa-
gation, which is a fundamental technique in solving constraint-satisfaction prob-
lems. The generalization lifts, in a uniform way, the concept of refutation from
Boolean satisfiability problems to general constraint-satisfaction problems. On
the one hand, this enables us to study and characterize basicconcepts, such as
refutation width, using tools from finite-model theory. On the other hand, this
enables us to introduce new proof systems, based on representation classes, that
have not been considered up to this point. We consider ordered binary decision
diagrams (OBDDs) as a case study of a representation class for refutations, and
compare their strength to well-known proof systems,such asresolution, the Gaus-
sian calculus, cutting planes, and Frege systems of boundedalternation-depth. In
particular, we show that refutations by ODBBs polynomiallysimulate resolution
and can be exponentially stronger.

1 Introduction

It is well known that the satisfiability problem for Boolean formulas in conjunctive
normal form (CNF) can be viewed as aconstraint-satisfaction problem(CSP). The in-
put to a CSP consists of a set of variables, a set of possible values for the variables,
and a set of constaints on the variables. The question is to determine whether there is
an assignment of values to the variables that satisfies the given constraints. The study
of CSP occupies a prominent place in artificial intelligenceand computer science, be-
cause many algorithmic problems from a wide spectrum of areas can be modeled as
such [Dec03]. These areas include temporal reasoning, belief maintenance, machine
vision, scheduling, graph theory, and, of course, propositional logic. Since constraint-
satisfaction problems constitute a natural generalization of Boolean satisfiability prob-
lems, it is natural to ask for proof systems that generalize the systems for propositional
logic to CSP. Such systems would be used to refute the satisfiability of an instance of a
constraint-satisfaction problem, much in the same way thatresolution is used to refute
the satisfiability of a CNF-formula.? Supported in part by CICYT TIC2001-1577-C03-02 and the Future and Emerging Technolo-

gies programme of the EU under contract number IST-99-14186(ALCOM-FT).?? Supported in part by NSF grant IIS-9907419.? ? ? Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435,
IIS-9978135, EIA-0086264, and ANI-0216467, and by BSF grant 9800096.

2 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi

One of the goals of this paper is to introduce a natural and canonical way of defin-
ing a proof system for every constraint-satisfaction problem. In order to achieve this,
first we need a unifying framework for representing such problems. This was achieved
by Feder and Vardi [FV98], who recognized that essentially all examples of CSPs in
the literature can be recast as the following fundamental algebraic problem, called the
HOMOMORPHISM PROBLEM: given two finite relational structuresA andB, is there
a homomorphismh : A ! B? Intuitively, the structureA represents the variables
and the tuples of variables that participate in constraints, the structureB represents the
domain of values, and the tuples of values that these constrained tuples of variables are
allowed to take, and the homomorphisms fromA toB are precisely the assignments
of values to variables that satisfy the constraints. For instance, the 3-COLORABILITY

problem coincides with the problem of deciding whether there is a homomorphism from
a given graphG toK3, whereK3 is the complete graph with three nodes (the triangle).
The uniform version of the HOMOMORPHISM PROBLEM, in which both structuresA
andB are given as input, is the most general formulation of the constraint-satisfaction
problem. Interesting algorithmic problems, however, alsoarise by fixing the structureB, which sometimes is called thetemplate structure. Thus, the resulting problem, de-
noted byCSP(B), asks: givenA, is there a homomorphism fromA toB? Note thatCSP(K3) is precisely the 3-COLORABILITY problem; more generally,CSP(Kk) is
thek-COLORABILITY problem, whereKk is the complete graph withk-nodes,k � 2.

With constraint-satisfaction problems presented as homomorphism problems in a
unfying way, we are closer to our first goal of defining canonical proof systems. The
approach we take is via yet another interpretation of CSPs, this time in terms of database
theory, building upon the homomorphism framework. As pointed out in [GJC94], every
constraint can be thought of as a table of a relational database, and the set of solutions
to a CSP can be identified with the tuples in thejoin of all constraints. This fruitful con-
nection between CSPs and database theory is explored furtherin [KV00a]. Now, a CSP
instance is unsatisfiable precisely when the join of the constraints is empty. We adopt
this approach and define aCSP(B) refutation of an instanceA to be a sequence of
constraints ending with the empty constraint, such that every constraint in the sequence
is an initial constraint, the join of two previous constraints, the projection of some previ-
ous constraint, or the weakening of some previous constraint. Projection and weakening
are not strictly necessary, but provide a versatile tool forreducing the complexity of the
intermediate constraints. Note that the join is a form of constraint propagation, since
it allows us to derive new constraints implied by the previous ones. See the work by
Freuder [Fre78] for the first theoretical approach to constraint propagation.

The proof systems obtained this way are sound and complete for constraint satisfac-
tion. We embark on the investigation of their general properties by focussing first on the
concept ofrefutation width, which is the maximum arity of the constraints in a refuta-
tion. Bounding the arity of the constraints generated during the execution of constraint
propagation algorithms has already played a crucial role inthe development of the the-
ory of CSPs, as a method to achieve tractability [Fre82,Fre90,DP87]. For example,
various concepts of consistency popularized by the AI community rely on it [Dec03].
Following the ideas in [FV98,KV00a,AD03], we are able to show that the minimal
refutation width of aCSP(B) instanceA is characterized by a combinatorial game in-

Constraint Propagation as a Proof System 3

troduced in the context of finite-model theory. In turn, again following [FV98,KV00a],
this leads us naturally to considering the treewidth of the instance as a parameter. As a
result, we obtain a deeper understanding and also a purely combinatorial characteriza-
tion of refutation width.

CSP refutations are perhaps too general to be of practical use. The rules are too gen-
eral and the constraints, if represented explicitly, may betoo large. Hence, we propose a
syntacticcounterpart to general CSP refutations, in which all the constraints are some-
how succintly represented. Technically speaking, we consider representation classes for
the constraints. Some examples include clauses, linear equalities over a finite field, lin-
ear inequalities over the integers, decision trees, decision diagrams, and so on. With this
new formalism, CSP proofs become purely syntactical objects, closer to their counter-
parts in propositional logic. As a case study, we investigate the proof system obtained
by using ordered binary decision diagrams (OBDDs) as our representation class for
constraints. OBDDs possess many desirable algorithmic properties and have been used
successfully in many areas, most notably in formal verification (see [Bry92,BCM+92]).
We compare the strength of refutations by OBDDs with other proof systems for propo-
sitional logic. We show that OBDD-based refutations polynomially simulate both reso-
lution and the Gaussian calculus; moreover, they are exponentially stronger than either
of these systems, even when the weakening rule is not allowed. If we make strong use
of weakening, then refutations by OBDDs can polynomially simulate the cutting planes
proof system with coefficients written in unary (calledCP � in [BPR97]). In partic-
ular, OBBDs provide polynomial-size proofs of the pigeonhole principle. This shows
already that refutations by OBDDs can be exponentially stronger than resolution, and
even Frege (Hilbert-style) systems with formulas of bounded alternation-depth,because
the pigeonhole principle is hard for them [Hak85,Ajt88,BIK+92]. Finally, we observe
that for a particular order of the variables, refutations byOBDDs have small commu-
nication complexity. By combining this with known techniques about feasible interpo-
lation [IPU94,Kra97], we establish that OBDD-based refutations have polynomial-size
monotone interpolants, for a particular order of the variables. This gives exponential
lower bounds for a number of examples, including the clique-coloring principle, still
for that particular order. Whether the restriction on the order is necessary remains an
interesting open problem.

2 Preliminaries

Constraint-satisfaction problems.A relational vocabulary� is a collection ofrelation
symbolsR, each of a specifiedarity. A �-structureA consists of auniverseA, or
domain, and for eachR 2 �, aninterpretationRA � Ar , wherer is the arity ofR.

Let B be a finite�-structure. We denote byCSP(B) the class of all finite�-
structuresA such that there is a homomorphism fromA to B. Recall that a homo-
morphism is a mapping from the universe ofA to the universe ofB that preserves the
relations. As mentioned in the introduction, eachCSP(B) is a constraint-satisfaction
problem. The structureB is called thetemplate structure. Let us discuss how 3-SAT
can be modeled by a particularCSP(B). This will be of help later in the paper. The
relational vocabulary consists of four ternary relation symbolsfR0; R1; R2; R3g rep-

4 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi

resenting all possible types of 3-clauses: clauses with no negations, clauses with one
negation, clauses with two negations, and clauses with three negations. The template
structureT has the truth tables of these types of clauses:RT0 = f0; 1g3 � f000g,RT1 = f0; 1g3 � f100g, RT2 = f0; 1g3 � f110g, andRT3 = f0; 1g3 � f111g. Every
3-CNF formula' gives rise to a�-structureA' with universe the set of variables of'
and relations encoding the clauses of'; for instance,RA'1 consists of all triples(x; y; z)
of variables of' such that(:x _ y _ z) is one of the clauses of'. Thus,CSP(T) is
equivalent to 3-SAT, since' is satisfiable if and only if there is a homomorphism fromA' toT.

Pebble games.The existentialk-pebble gameswere defined in [KV95,KV00a]. The
games are played between two players, the Spoiler and the Duplicator, on two�-
structuresA andB according to the following rules. Each player has a set ofk pebbles
numberedf1; : : : ; kg. In each round of the game, the Spoiler can make one of two dif-
ferent moves: either he places a free pebble on an element of the domain ofA, or he
removes a pebble from a pebbled element ofA. To each move of the Spoiler, the Du-
plicator must respond by placing her corresponding pebble over an element ofB, or
removing her corresponding pebble fromB, respectively. If the Spoiler reaches a round
in which the set of pairs of pebbled elements is not a partial homomorphism betweenA andB, then he wins the game. Otherwise, we say that the Duplicatorwins the game.
The formal definition can be found in [KV95,KV00a], and the close relationship be-
tween existential pebble games and constraint-satisfaction problems was discussed at
length in [KV00b].

Treewidth. The treewidthof a graph can be defined in many different ways [Bod98].
One way is this. The treewidth of a graphG is the smallest positive integerk such thatG is a subgraph of ak-tree, where ak-tree is defined inductively as follows: thek+ 1-
cliqueKk+1 is ak-tree, and ifG is ak-tree, then the result of adding a new node toG
that is adjacent to exactly the nodes of ak-clique ofG (thus forming a (k+1)-clique)
is also ak-tree. TheGaifman graphof a structureA is the graph whose set of nodes is
the universe ofA, and whose edges relate pairs of elements that appear in sometuple
of a relation ofA. Thetreewidthof a structure is the treewidth of its Gaifman graph.

3 Proof Systems for CSPs

Notions from Database Theory.A relation schemaR(x1; : : : ; xk) consists of arela-
tion nameR, and a set ofattribute namesx1; : : : ; xk. A database schema� is a set of
relation schemas. Arelation conforming witha relation schemaR(x1; : : : ; xk) is a set
of k-tuples. Adatabase overa database schema� is a set of relations conforming with
the relation schemas in�. In other words, a database over� is a�-structure, except that
the universe of the structure is not made explicit. In the sequel, we often conflate the
notation and use the same symbol for both a relation schema and a relation conforming
with that schema.

We usex to denote a tuple of attribute names(x1; : : : ; xk) and also to denote the
setfx1; : : : ; xkg. It will be clear from context which case it is. LetR be a relation

Constraint Propagation as a Proof System 5

conforming with the relational schemaR(x). Let y � x be a subset of the set of
attribute names. Theprojectionof R with respect toy is the relation whose attribute
names arey, and whose tuples can be extended to tuples inR. We denote it�y(R).
Let R andS be relations conforming with relational schemasR(x) andS(y). The
relational join of R andS, or simply join, is the largest relationT whose attribute
names arex [y, and such that�x(T) � R and�y(T) � S. We denote it byR 1 S.
Joins are commutative and associative, and can be extended to an arbitrary number of
relations.

Notions from CSPs.Let � be a relational vocabulary. LetA andB be two�-structures.
A k-ary constraintis a pair(x; R), wherex is ak-tuple of distinct elements of the uni-
verse ofA, andR is ak-ary relation over the universe ofB. The constraint(x; R) can
be interpreted as a pair formed by a relation schemaR(x) and a relationR conforming
with it. Here,x is the set of attribute names. Thus, it makes sense to talk about joins and
projections of constraints. We say that a constraint(x; R) is asuperset, or weakening,
of another constraint(y; S) if x = y andR � S.

If there is a homomorphism fromA to B, then we say that the instanceA ofCSP(B) is satisfiable; otherwise, we say that it isunsatisfiable. Recall from Section 2
that these definitions generalize Boolean satisfiability and unsatisfiability of 3-CNF for-
mulas. If a CSP instance is unsatisfiable, its satisfiabilitymay berefuted. We are inter-
ested inrefutationsby means of joins, projections, and weakening. Here, constraints(x; R) are viewed as relational schemasR(x) with a relationR conforming with it as
suggested in the preceding paragraph.

Definition 1 (CSP Refutation).LetA andB be�-structures. ACSP(B) proof fromA is a finite sequence of constraints(x; R) each of which is of one of the following
forms:

1. Axiom:(x; RB), whereR 2 � andx 2 RA
2. Join:(x [y; R 1 S), where(x; R) and(y; S) are previous constraints.
3. Projection:(x� fxg; �x�fxg(R)), where(x; R) is a previous constraint.
4. Weakening:(x; S), where(x; R) is a previous constraint andR � S.

ACSP(B) refutation ofA is a proof whose last constraint has an empty relation.

Note that the projections eliminate one variable at a time. We say that the variable
is projected out. The following simple result states that CSP refutations form a sound
and complete method for proving that a given instance of a CSPis unsatisfiable. The
fact that CSP can be reduced to a join of constraints is mentioned already in [GJC94].

Theorem 1 (Soundness and Completeness).LetA andB be�-structures. Then,A
has aCSP(B) refutation if and only ifA is unsatisfiable inCSP(B). In fact, axioms
and joins alone are already enough to refute an unsatisfiableinstance.

Due to space limitations, we need to omit most proofs in this version of the paper.
The proof of Theorem 1 shows that refutations need not be any longer than linear in the
number of constraints of the CSP instance. However, the critical reader may observe

6 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi

that the intermediate constraints may be arbitrarily complex. On the other hand, the
rules of projection and weakening can be used to lower this complexity when necessary.
It will become clear later on how this is of any help in applications. At this point, let us
introduce a formalism to measure the complexity of the intermediate constraints. Ak-
ary constraint(x; R) can be identified with a Boolean-valued functionf : Bk ! f0; 1g
by lettingf(a) = 1 if and only if a 2 R (in other words, this is thecharacteristic
function of the relationR). Now, functions of this sort can be represented in various
ways by means of representation classes.

Definition 2 (Representation Class).LetB be a finite set. A representation class for
Boolean-valued functions with domainBk is a triple R = (Q; I; S), whereQ is a
set, called the set of representations,I is a mapping fromQ to the set of functionsf : Bk ! f0; 1g called the interpretation, andS is a mapping fromQ to the integers,
called the size function.

To be useful for CSP refutations, representation classes should satisfy certain regu-
larity conditions, such as being closed under joins and projections. In addition, the size
function should capture the intuitive notion ofcomplexityof a representation. There are
many examples of representation classes in the literature,particularly when the domainB is Boolean, that is,B = f0; 1g.
Examples.Let B = f0; 1g, and letA = fx1; : : : ; xng be a set of propositional vari-
ables. Clauses overA form a representation class. The interpretation of a clauseis the
obvious one, and we may define the size of a clause by the numberof literals in it. A
clauseC can be thought of as a constraint(x; R), wherex is the set of variables inC (not literals), andR is the set of truth assignments to the variables that satisfythe
clause. Unfortunately, clauses are not closed under joins,that is, the join of two clauses
is not necessarily a clause. Nonetheless, clauses are closed under theresolution rule,
which can be seen as a combination of one join and one projection (see also [DvB97]).
Indeed, ifC_x andD_:x are clauses, then theresolventclauseC_D is precisely the
result of projectingx out of their join. We exploit and elaborate on this connection with
resolution in Section 5. Binary decision diagrams (BDDs), a.k.a. branching programs
(BPs), also form a representation class (see section 5 for a reminder of the definitions).
The interpretation of a BDD is the obvious one, and we may define its size by the num-
ber of nodes of its graph. BDDs are closed under joins and projections. In fact, BDDs
are closed under all operations, since BDDs can represent all Boolean functions. More-
over, when an order on the variables is imposed, the representation of the join can be
obtained in polynomial time. We will discuss these issues inSection 5. Linear inequal-
ities
Pi aixi � a0, for integersai, also form a representation class. The interpretation

of
Pi aixi � a0 is ak-ary Boolean-valued functionf : Bk ! f0; 1g, wherek is the

number of variables, defined byf(b1; : : : ; bk) = 1 if and only if
Pi aibi � a0. The

size of a linear inequality may be defined by the number of bitsneeded to represent
thek + 1 coefficients, or bya0 +Pi ai if the coefficients are represented in unary. As
was the case with clauses, linear inequalities are not closed under joins. Representation
classes can also be used to represent functionsf : Bk ! f0; 1g with non-Boolean
domainB. As long asB is finite, BDDs form an appropriate example. The particular
case of (non-binary) decision trees is also a good example.

Constraint Propagation as a Proof System 7

The notion of a representation class suggests a syntactic counterpart of the general
notion of CSP refutation. Moreover, it also suggests a way tobound the complexity of
the intermediate relations in a CSP refutation. Recall thatthe width of constraint(x; R)
is the same as its arity, that is, the length of the tuplex.

Definition 3 (Complexity Measures).LetB be a�-structure. LetR = (Q; I; S) be a
representation class for Boolean-valued functions on the universe ofB. LetC1; : : : ; Cm
be aCSP(B) proof, and letri 2 Q be a representation of the constraintCi. We say
thatr1; : : : ; rm is anR-proof. Its length ism, its size isS(r1) + � � �+ S(rm), and its
width is the maximum width ofC1; : : : ; Cm.

It was mentioned already that a representation class shouldsatisfy certain regularity
conditions. The actual conditions depend on the application at hand. One particularly
useful property is that the representation of a join (projection, weakening) be com-
putable in polynomial time from the representations of the given constraints. In our
intended applications, this will indeed be the case.

4 Refutation Width and Treewidth

Characterization of refutation width. Width has played a crucial role in the develop-
ment of the theory of CSPs [DP87]. Part of the interest comes from the fact that a width
upper bound translates, for most representations, to a sizebound on individual con-
straints. This is true, for example, for explicit representation and for BDDs. In the proof
complexity literature, Ben-Sasson and Wigderson [BSW01] viewed it as a complexity
measure for resolution. Here, we adopt the methods for CSP refutations.

Theorem 2. LetA andB be two finite�-structures. The following are equivalent:

1. A has aCSP(B) refutation of widthk.
2. The Spoiler wins the existentialk-pebble game onA andB.

An intimate connection between pebble games and the notion of strong consistency
[Dec92] was established in [KV00b]. This entails an intimate connection between the
concepts of refutation width and the concept of strong consistency. Specifically, it fol-
lows from the results in [KV00b] and the above theorem thatA has aCSP(B) refuta-
tion of widthk precisely when it is impossible to establish strongk-consistency forA
andB.

Next we turn to studying the effect of the treewidth of the instanceA on the width
of the CSP refutations. We will need the following result dueto Dalmau, Kolaitis and
Vardi:

Theorem 3 ([DKV02]). Let k � 2, letA be a finite�-structure of treewidth less thank, and letB be a finite�-structure. Then the following statements are equivalent:

1. There is a homomorphism fromA toB.
2. The Duplicator wins the existentialk-pebble game onA andB

8 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi

It is immediate from Theorems 2 and 3 that ifA is unsatisfiable inCSP(B) and has
treewidth less thank, thenA has aCSP(B) refutation of widthk. In fact, this result
remains true in a more general situation. A substructureC ofA is called acoreofA if
there is a homomorphism fromA toC, but, for every proper substructureC0 ofC, there
is no homomorphism fromA toC0. It is known [HN92] that every finite structureA has
a unique core up to isomorphism, denoted bycore(A), and thatA is homomorphically
equivalent tocore(A). In the context of database theory, the treewidth of the coreofA captures exactly the smallest numberk such that the canonical conjunctive queryQA can be expressed in the existential positive fragment of first-order logic withk
variables [DKV02, Theorem 12]. Now, back to refutations, ifA is an unsatisfiable
instance ofCSP(B) and the core ofA has treewidth less thank, thenA also has aCSP(B) refutation of widthk. Indeed, ifA is an unsatisfiable instance ofCSP(B),
so iscore(A) because they are homomorphically equivalent; moreover, ifcore(A) has
treewidth less thank, thencore(A) has aCSP(B) refutation of width less thank. Sincecore(A) is a substructure ofA, a CSP(B) refutation ofcore(A) is also aCSP(B)
refutation ofA.

One may wonder whether the converse is true. Is the treewidthof the core ofA
capturing the width of the refutations ofA? Unfortunately, the answer turns out to
be negative for rather trivial reasons. Take aB such thatCSP(B) can be solved by
a k-Datalog program for some fixedk. For example, letB = K2 so thatCSP(B)
becomes 2-COLORABILITY , which is expressible in 3-Datalog. Take a graphG which
is not 2-colorable. Hence, the Spoiler wins the existential3-pebble game onG andK2
[KV00a]. Now just add an arbitrarily large clique toG, that is, letG0 = G [Kk for
some largek. There still exists aCSP(B) refutation ofG0 of width 3, but the core ofG0 has treewidth at leastk�1. This counterexample, however, suggests that something
more interesting is going on concerning the relationship between existentialk-pebble
games and treewidthk.

Theorem 4. Let k � 2, let A andB be two finite�-structures. Then the following
statements are equivalent:

1. The Duplicator wins the existentialk-pebble game onA andB.
2. IfA0 is a structure of treewidth less thank and such that there is a homomorphism

fromA0 to A, then the Duplicator wins the existential k-pebble game onA0 andB.

Proof sketch: (i)) (ii) is easy. (ii)) (i). Let PB be thek-Datalog program that ex-
presses the query: “GivenA, does the Spoiler win the existentialk-pebble game onA
andB?” [KV00a]. Assume that the Spoiler wins the existentialk-pebble game onA
andB. HenceA satisfiesPB, hence it satisfies one of the stages of thek-Datalog pro-
gramPB. Each such stage is definable by a union of conjunctive queries, each of which
can be written in the existential positive fragment of first-order logic withk variables.
HenceA satisfiesQA0

, whereA0 is a structure of treewidth less thank. Hence, there is
a homomorphismh fromA0 toA. But alsoA0 satisfiesPB, hence the Spoiler wins the
existentialk-pebble game onA0 andB. ut

Now we combine Theorems 2, 3 and 4 to obtain a purely combinatorial characteri-
zation of when a structure has a CSP refutation of a certain width.

Constraint Propagation as a Proof System 9

Corollary 1. Let k � 2, let A andB be two finite�-structures. The following are
equivalent:

1. A has aCSP(B) refutation of widthk.
2. There exists a structureA0 of treewidth less thank and such that there is a homo-

morphism fromA0 toA, andA0 is unsatisfiable inCSP(B).
Note that the characterization of refutation width is stated in terms of treewidth and

homomorphisms and does not mention refutations at all. Let us add that the structure
in (2) can be large, so Corollary 1 does not yield any complexity bound for deciding
whetherA has aCSP(B) refutation of widthk. As it turns out, it follows from Theo-
rem 2 and the result in [KP03], that this problem is EXPTIME-complete.

Small-width proof-search algorithms.Next we study the complexity of finding a sat-
isfying assignment, or refuting the satisfiability, of an instanceA of CSP(B) when we
parameterize by the treewidthk ofA. The decision problem has been studied before in
certain particular cases. Whenk is bounded by a constant, the problem can be solved
in polynomial time [DP87,Fre90]. WhenB is a fixed structure, Courcelle’s Theorem
[Cou90] implies that the problem can be solved in time2O(k)n, wheren is the size ofA. Indeed, ifB is fixed, then satisfiability inCSP(B) can be expressed in monadic
second-order logic, so Courcelle’s Theorem applies. We consider the case in whichB
andk are not fixed, and also the problem of finding a satisfying assignment, or a refu-
tation. In the particular case of BooleanB and resolution refutations, a related problem
was studied in [AR02] where branchwidth was used instead of treewidth. Our proof is
more general, rather different, and perhaps simpler.

Theorem 5. The problem of determining whether a structureA of treewidthk is satis-
fiable inCSP(B) can be solved by a deterministic algorithm in time2O(k)mO(k)nO(1),
wheren is the size ofA andm is the size ofB. In particular, the algorithm runs in
polynomial time whenk = O(logn= logm). Moreover, ifA is satisfiable, the algo-
rithm produces a homomorphismh : A ! B, and ifA is unsatisfiable, it produces aCSP(B) refutation of widthk.

Proof sketch.The idea is to build an existential positive sentence , with k variables,
that is a rewriting of the canonical queryQA. This takes time polynomial in the tree-
decomposition ofA, which can be found in time2O(k)nO(1). Then we evaluate onB bottom up, from inner subformulas to the root. Since each subformula involves at
mostk variables, this takes timemO(k) times the size of the formula, which is time2O(k)mO(k)nO(1) overall. Since � QA, we have thatB satisfies if and only if
there exists a homomorphism fromA toB. ut
5 Refutations by OBDDs: a case study

Regularity properties of OBDDs. In this section we study the effect of usingordered
binary decision diagramsas a representation class for constraints. We focus on the
Boolean caseB = f0; 1g.

10 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi

For the history on the origins of binary decision diagrams, branching programs, and
ordered binary decision diagrams we refer the reader to the survey by Bryant [Bry92].
Here are the definitions. Letx1; : : : ; xn ben propositional variables. Abinary deci-
sion diagram(BDD), or branching program(BP), represents a Boolean function as a
rooted, directed acyclic graphG. Each non-terminal nodeu of G is labeled by a vari-
ablev(u) 2 fx1; : : : ; xng, and has arcs toward two childrent(u) andf(u), referred to
as the true and the false children respectively. Each terminal node is labeled0 or 1. For
a truth assigment to the variablesx1; : : : ; xn, the value of the function is determined by
following the path through the directed graph, from the rootto a terminal node, accord-
ing to the labels of the nodes and the values to the variables.The size of a BDD is the
size of the underlying graphG. An ordered binary decision diagram(OBDD) is a BDD
in which labeled paths are consistent with a specific total order< over the variables.
More precisely, for an OBDD we require that the variable labeling a non-terminal node
be smaller than the variables labeling its non-terminal children, according to a fixed
order over the variables.

The main property of OBDDs is that, in their reduced form, they arecanonical,
meaning that for a given order, two OBDDs for the same function are isomorphic. An
immediate consequence is that testing for equivalence of two OBDDs can be solved in
time polynomial in their size. Most interesting for us is thefact that representations of
joins and projections are computable in polynomial time, and determining whether an
OBDD is a weakening of another is decidable in polynomial time.

It follows from this that given a CSP refutationC1; : : : ; Cm with the constraints
represented by OBDDs, the validity of applications of the join rule, the projection rule,
and the weakening rule, can be checked in polynomial time. Therefore, refutations by
OBDDs when applied to 3-SAT (a particularCSP(B), see below) form a proof system
in the sense of Cook and Reckhow [CR79].

Strength of refutations by OBDDs. Let us compare the size of CSP refutations by
OBDDs with other well-known proof systems for propositional logic. Recall from Sec-
tion 2 how 3-SAT is represented as aCSP(B) problem. The template structure isT
and its vocabulary consists of four ternary relationsfR0; R1; R2; R3g, one for each
type of 3-clause. Thus, structures for this vocabulary are 3-CNF formulas. Arefutation
by OBDDsof a 3-CNF formulaA is a refutation ofA in CSP(T) when constraints are
represented by OBDDs for a fixed total order of the variables.Size, length and width of
refutations by OBDDs are defined according to Definition 3 in Section 3.

Resolution.The resolution rule is very simple: fromC _ x andD _ :x, deriveC _D,
whereC andD are clauses in whichx does not occur. The goal is to derive the empty
clause from a given set of initial clauses. The length of a resolution refutation is the
number of clauses that are used in it. The size of a resolutionrefutation is the total
number of literals that appear in it. There are two key observations that concern us
here. The first is that every clause has a small equivalent OBDD over all orders of the
variables. The second observation is thatC _D can be expressed in terms of one join
and one projection fromC _ x andD _ :x (see also [DvB97]). We use both facts for
the following result whose proof will be included in the fullpaper.

Constraint Propagation as a Proof System 11

Theorem 6. LetA be a 3-CNF formula onn variables. IfA has a resolution refutation
of lengthm, thenA has a refutation by OBDDs of length2m and sizeO(mn2), even
without using the weakening rule and for every order of the variables. Moreover, there
is a polynomial-timealgorithm that converts the resolution refutation into the refutation
by OBDDs.

We will see below that, in fact, refutations by OBDDs are exponentially stronger
than resolution. As an intermediate step we move to a different CSP: systems of equa-
tions overZ2.
Gaussian calculus.One nice feature of OBDDs is that they give a uniform framework
for defining all types of constraints. Consider now the CSP defined by systems of linear
equations over the two-element fieldZ2, with exactly three variables per equation. That
is, the vocabulary contains two ternary relation symbolsR0 andR1 representing the
equationsx + y + z = 0 andx + y + z = 1 respectively. The template structureS contains the truth tables of these equations: that isRS0 = f000; 011; 110;101g andRS1 = f001; 010; 100;111g. Now CSP(S) coincides with systems of equations overZ2. The standard method for solving systems of equations is Gaussian elimination. In
fact, Gaussian elimination can be used to refute the satisfiability of systems of equations
by deriving, for example,0 = 1 by means of linear combinations that cancel at least
one variable. This has led to proposing the Gaussian calculus as a proof system [BSI99].
Let us see that refutations by OBDDs can polynomially simulate it. Perhaps the most
interesting point of the proof is that we actually show that weakening is not required,
which is not immediately obvious.

Theorem 7. LetA be a system of equations overZ2 with exactly three variables per
equation. IfA has a Gaussian calculus refutation of lengthm, thenA has a refutation
by OBDDs inCSP(S) of length2m and sizeO(mn2), even without using the weak-
ening rule and for every order of the variables. Moreover, there is a polynomial-time
algorithm that converts the Gaussian calculus refutation into the refutation by OBDDs.

We can now use this result to conclude that for 3-CNF formulas, refutations by
OBDDs are exponentially stronger than resolution. Consider the standard translation of
a linear equationx + y + z = a of Z2 into a 3-CNF formula. Namely, fora = 1 the
3-CNF formula is(x _ y _ z) ^ (x _ :y _ :z) ^ (:x_ y _ :z) ^ (:x _ :y _ z);
and the formula fora = 0 is similar. For a system of equations overZ2 with three
variables per equationA, letT(A) be its translation to a 3-CNF formula. It is not hard
to see that ifA has a refutation by OBDDs inCSP(S) of lengthm, thenT(A) has
a refutation by OBDDs inCSP(T) of lengthO(m). The idea is that the join of the
OBDDs for the clauses defining an equationx + y + z = a is precisely an OBDD
representing the equationx+ y+ z = a. Therefore, one refutation reduces to the other.

The particular system of equations known asTseitin contradictions[Tse68] is ex-
ponentially hard for resolution. This was shown by Urquhart[Urq87] and was later
extended by Ben-Sasson [BS02] who showed the same result forevery Frege sys-
tem (Hilbert-style system) restricted to formulas of bounded alternation-depth. This

12 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi

establishes that refutations by OBDDs are exponentially stronger than resolution. For
bounded alternation-depth Frege systems, it shows that in some cases refutations by
OBDDs might be exponentially stronger. In the next section we see that refutations by
OBDDs and bounded alternation-depth Frege systems are incomparable.

Cuttingplanes.We now show that, in the presence of weakening, refutations by OBDDs
polynomiallysimulate the cutting planes proof system withsmall coefficients. It is well-
known that clauses can be expressed as linear inequalities over the integers. For example
the clausex _ :y _ z can be expressed byx + (1 � y) + z � 1, or equivalently,x � y + z � 0. Therefore, a CNF formula translates into a system of inequalities
over the integers in a natural way. The cutting planes proof system was introduced in
[CCT87]. The lines in the proof are linear inequalities overthe integers. There are three
rules of inference: addition, scalar multiplication,and integer division.The only rule the
requires explanation is the integer division. From

Pi(c � ai)xi � a0 derive
Pi aixi �da0=ce. Intuitively, if all coefficients except the independent term are divisible byc,

then we may divide all over, and round-up the independent term. The rule is sound
on the integers, meaning that if thexi’s take integer values that satisfy the hypothesis,
then the conclusion is also satisfied. The goal of the system is to derive a contradiction0 � 1 from a given set of linear inequalities. For refuting 3-CNF formulas, each clause
is viewed as a linear inequality as described before.

In order to measure the size of a proof we need to specify an encoding for the
inequalities. When the coefficients are encoded in unary, the system has been namedCP � and studied in [BPR97]. We see that refutations by OBDDs can polynomially
simulateCP �. As it turns out, the rule of weakening is strongly used here.Whether
weakening is strictly necessary remains as an intriguing open problem.

Theorem 8. Let A be a 3-CNF. IfA has aCP � refutation of lengthm and sizes,
thenA has a refutation by OBDDs of length2m and sizesO(1), for every order of
the variables. Moreover, there is a polynomial-time algorithm that converts theCP �
refutation into the refutation by OBDDs.

One consequence of this is that thepigeonhole principle, when encoded proposi-
tionally as an unsatisfiable 3-CNF formula, admits polynomial-size OBDD refutations.
This follows from the known polynomial-size proofs of the pigeonhole principle in
cutting planes [CCT87]. In contrast, the pigeonhole principle requires exponential-size
refutations in resolution [Hak85]. It would be good to find a direct construction of the
polynomial-size OBDD proof of the pigeonhole principle.

Interpolation. Craig’s Interpolation Theorem in the propositional setting is this. LetA(x;y) andB(y; z) be propositional formulas for whichx, y andz are pairwise dis-
joint. If A(x;y) ^ B(y; z) is unsatisfiable, then there exists a formulaC(y) such thatA(x;y) ^ :C(y) andC(y) ^ B(y; z) are both unsatisfiable. The promisedC(y) is
called aninterpolant.

Interpolation has been used in propositional proof complexity as a method for lower
bounds. Following earlier working starting in [IPU94,BPR97], Krajı́cek [Kra97] sug-
gested the following approach. Suppose we are given a refutation ofA(x;y)^B(y; z).

Constraint Propagation as a Proof System 13

Suppose, further, that we are able to extract an interpolantC(y) by manipulation from
the proof. Then, lower bounds for the complexity of the interpolants give lower bounds
for the refutations. This idea has been used successfully for a number of proof systems
including resolution and cutting planes (see [IPU94,BPR97,Kra97,Pud97]). The fea-
sible interpolation of resolution has been recently used byMcMillan [McM03] as an
effective abstraction technique in symbolic model checking.

Our aim is to discuss the fact that refutations by OBDDs have feasible interpolation
for certain orders of the variables. Following the machinery developed in [IPU94], it is
enough to observe that evaluating an OBDD requires small communication complexity
for nice orders. We omit further details in this version and state the final result without
proof. Thenarrownessof an OBDD is the maximum number of nodes in a level.

Theorem 9. LetF = A(x;y) ^ B(y; z) be an unsatisfiable 3-CNF formula, and letn = jyj. If F has an OBDD refutation of lengthmwith OBDDs of narrowness bounded
by c, and with an order that is consistent withx < y < z, thenF has an interpolant
circuit of sizeO(c2(m+n)). In particular, if the size of the refutation iss, then the size
of the interpolant issO(1). In addition, ifA(x;y) is monotone iny, then the interpolant
circuit is monotone.

Let us mention that the monotone feasible interpolation of refutations by OBDDs
establishes a separation from Frege systems with formulas of bounded alternation-
depth. It is known that monotone interpolants for such systems require exponential-size
[Kra97]. This, together with the results of previous sections, establishes that refutations
by OBDDs are incomparable in strength with Frege systems of bounded alternation-
depth.

6 Concluding Remarks

Viewing constraint propagation as a proof system lifts proof complexity from propo-
sitional logic to all constraint-satisfaction problems. There are many questions that re-
main open from our work.

First, it is necessary to have better understanding of the role of the weakening rule.
We know it is not needed to achieve completeness, not even in the case of restricted refu-
tation width in Theorem 2. It remains an open problem to determine whether refutation
by OBDDs without weakening can polynomially simulateCP � refutations. Clarifying
the role of weakening is also important for algorithmic applications. Second, the proof
complexity of refutations by OBDDs needs further development. One problem that is
left open is to find a non-trivial lower bound for the size of refutations by OBDDs
that holds for every order of the variables. Another problemthat is left open is whether
OBDD-based refutations polynomially simulate cutting planes with coefficients written
in binary. Are OBDD-based refutations automatizable in thesense of [BPR00]? Can we
use the feasible interpolation of OBDD-based refutations in an effective manner analo-
gous to that of McMillan [McM03]?

Finally, it would be good to find practical decision procedures based on CSP proofs,
the same way that the DPLL approach is based on resolution. Some progress in this

14 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi

direction is reported in [DR94], which reports on SAT-solving using directional resolu-
tion, and in [PV04], which reports on SAT-solving using OBDD-based refutations. This
could lead to CSP-solvers that deal directly with the CSP instances, avoiding the need
to translate to a propositional formula and using a SAT-solver as it is sometimes done.

References

[AD03] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. In
18th IEEE Conference on Computational Complexity, pages 239–247, 2003.

[Ajt88] M. Ajtai. The complexity of the pigeonhole principle. In29th Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 346–355, 1988.

[AR02] M. Alekhnovich and A. Razborov. Satisfiability, branch-width and Tseitin tautolo-
gies. In43rd Annual IEEE Symposium on Foundations of Computer Science, pages
593–603, 2002.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking:1020 states and beyond.Information and Computation, 98(2):142–
170, 1992.

[BIK+92] P. Beame, R. Impagliazzo, J. Kraj́ıcek, T. Pitassi, P. Pudlák, and A. Woods. Exponen-
tial lower bounds for the pigeonhole principle. In24th Annual ACM Symposium on
the Theory of Computing, pages 200–220, 1992.

[Bod98] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.Theoret-
ical Computer Science, 209:1–45, 1998.

[BPR97] M. L. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with
small coefficients.Journal of Symbolic Logic, 62(3):708–728, 1997.

[BPR00] M. L. Bonet, T. Pitassi, and R. Raz. On interpolationand automatization for Frege
systems.SIAM Journal of Computing, 29(6):1939–1967, 2000.

[Bry92] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams.ACM Computing Surveys, 24(3):293–318, 1992.

[BS02] E. Ben-Sasson. Hard examples for bounded depth frege. In 34th Annual ACM Sym-
posium on the Theory of Computing, pages 563–572, 2002.

[BSI99] E. Ben-Sasson and R. Impagliazzo. Random CNF’s are hard for the polynomial
calculus. In40th Annual IEEE Symposium on Foundations of Computer Science,
pages 415–421, 1999.

[BSW01] E. Ben-Sasson and A. Wigderson. Short proofs are narrow–resolution made simple.
Journal of the ACM, 48(2):149–169, 2001.

[CCT87] W. Cook, C. R. Coullard, and G. Turán. On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18:25–38, 1987.

[Cou90] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen,
editor,Hankbook of Theoretical Computer Science, volume 2, pages 194–242. Else-
vier Science Publishers, 1990.

[CR79] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36–50, 1979.

[Dec92] R. Dechter. From local to global consistency.Artificial Intelligence, 55(1):87–107,
May 1992.

[Dec03] R. Dechter.Constraint Processing. Morgan Kaufmman, 2003.
[DKV02] V. Dalmau, Ph. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction, bounded

treewidth, and finite variable logics. In8th International Conference on Principles
and Practice of Constraint Programming (CP), volume 2470 ofLecture Notes in
Computer Science, pages 310–326. Springer, 2002.

Constraint Propagation as a Proof System 15

[DP87] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction prob-
lems.Artificial Intelligence, 34:1–38, 1987.

[DR94] R. Dechter and I. Rish. Directional Resolution: The Davis-Putnam Procedure, Re-
visited. In4th International Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 134–145. Morgan Kaufmann, 1994.

[DvB97] R. Dechter and P. van Beek. Local and global relational consistency.Theoretical
Computer Science, 173(1):283–308, 1997.

[Fre78] E. C. Freuder. Synthesizing constraint expressions. Communications of the ACM,
21(11):958–966, 1978.

[Fre82] E. C. Freuder. A sufficient condition for backtrack-free search.Journal of the Asso-
ciation for Computing Machinery, 29(1):24–32, 1982.

[Fre90] E. C. Freuder. Complexity ofk-tree structured constraint satisfaction problems. In
Proc. AAAI-90, pages 4–9, 1990.

[FV98] T. Feder and M. Y. Vardi. The computational structureof monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory.SIAM Journal
of Computing, 28(1):57–104, 1998.

[GJC94] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposition constraint satisfaction
problems using database techniques.Artificial Intelligence, 66:57–89, 1994.

[Hak85] A. Haken. The intractability of resolution.Theoretical Computer Science, 39:297–
308, 1985.

[HN92] P. Hell and J. Nešetřil. The core of a graph.Discrete Mathematics, 109:117–126,
1992.

[IPU94] R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bounds for tree-like
cutting planes proofs. In9th IEEE Symposium on Logic in Computer Science, pages
220–228, 1994.

[KP03] Ph. G. Kolaitis and J. Panttaja. On the complexity of existential pebble games. In
Computer Science Logic ’2003, 17th Annual Conference of theEACSL, volume 2803
of Lecture Notes in Computer Science, pages 314–329. Springer, 2003.

[Kra97] J. Kraj́ıcek. Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic.Journal of Symbolic Logic, 62:457–486, 1997.

[KV95] Ph. G. Kolaitis and M. Y. Vardi. On the expressive power of Datalog: tools and a case
study.Journal of Computer and System Sciences, 51:110–134, 1995.

[KV00a] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satis-
faction. Journal of Computer and System Sciences, 61(2):302–332, 2000.

[KV00b] Ph. G. Kolaitis and M. Y. Vardi. A game-theoretic approach to constraint satisfaction.
In 17th National Conference on Artificial Intelligence, pages 175–181, 2000.

[McM03] K. L. McMillan. Interpolation and SAT-based model checking. In Warren A. Hunt
Jr. and Fabio Somenzi, editors,Proceedings of the 15th International Conference
on Computer Aided Verification (CAV), volume 2725 ofLecture Notes in Computer
Science, pages 1–13. Springer, 2003.

[Pud97] P. Pudlák. Lower bounds for resolution and cuttingplane proofs and monotone com-
putations.Journal of Symbolic Logic, 62(3):981–998, 1997.

[PV04] G. Pan and M. Y. Vardi. Search vs. symbolic techniquesin satisfiability solving. To
appear in Proceedings 7th International Conference on Theory and Applications of
Satisfiability Testing, 2004.

[Tse68] G. S. Tseitin.On the complexity of derivation in propositional calculus, pages 115–
125. Consultants Bureau, 1968.

[Urq87] A. Urquhart. Hard examples for resolution.Journal of the ACM, 34(1):209–219,
1987.

