
Model Checking of Safety Properties

Orna Kupferman1? and Moshe Y. Vardi2??

1 Hebrew University, The institute of Computer Science, Jerusalem 91904, Israel

Email: orna@cs.huji.ac.il , URL: http://www.cs.huji.ac.il/�orna
2 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.

Email: vardi@cs.rice.edu , URL: http://www.cs.rice.edu/�vardi

Abstract. Of special interest in formal verification are safety properties, which as-

sert that the system always stays within some allowed region. A computation that

violates a general linear property reaches a bad cycle, which witnesses the violation

of the property. Accordingly, current methods and tools for model checking of linear

properties are based on a search for bad cycles. A symbolic implementation of such

a search involves the calculation of a nested fixed-point expression over the system’s

state space, and is often very difficult. Every computation that violates a safety prop-

erty has a finite prefix along which the property is violated. We use this fact in order

to base model checking of safety properties on a search for finite bad prefixes. Such a

search can be performed using a simple forward or backward symbolic reachability

check. A naive methodology that is based on such a search involves a construction of

an automaton (or a tableau) that is doubly exponential in the property. We present an

analysis of safety properties that enables us to prevent the doubly-exponential blow

up and to use the same automaton used for model checking of general properties,

replacing the search for bad cycles by a search for bad prefixes.

1 Introduction

Today’s rapid development of complex and safety-critical systems requires reliable veri-

fication methods. In formal verification, we verify that a system meets a desired property

by checking that a mathematical model of the system meets a formal specification that

describes the property. Of special interest are properties asserting that observed behavior

of the system always stays within some allowed set of finite behaviors, in which nothing

“bad” happens. For example, we may want to assert that every message received was pre-

viously sent. Such properties of systems are called safety properties. Intuitively, a property

 is a safety property if every violation of occurs after a finite execution of the system.

In our example, if in a computation of the system a message is received without previously

being sent, this occurs after some finite execution of the system.

In order to formally define what safety properties are, we refer to computations of a

nonterminating system as infinite words over an alphabet �. Typically, � = 2

AP , where

AP is the set of the system’s atomic propositions. Consider a language L of infinite words

over �. A finite word x over � is a bad prefix for L iff for all infinite words y over �, the

concatenation x � y of x and y is not in L. Thus, a bad prefix for L is a finite word that

? Part of this work was done when this author was visiting Cadence Berkeley Laboratories.
?? Supported in part by the NSF grants CCR-9628400 and CCR-9700061, and by a grant from the

Intel Corporation. Part of this work was done when this author was a Varon Visiting Professor at

the Weizmann Institute of Science.

cannot be extended to an infinite word in L. A language L is a safety language iff every

word not in L has a finite bad prefix. For example, if � = f0; 1g, then L = f0

!

; 1

!

g is

a safety language. To see this, note that every word not in L contains either the sequence

01 or the sequence 10, and a prefix that ends in one of these sequences cannot be extended

to a word in L. The definition of safety we consider here is given in [AS85], it coincides

with the definition of limit closure defined in [Eme83], and is different from the definition

in [Lam85], which also refers to the property being closed under stuttering.

Linear properties of nonterminating systems are often specified using Büchi automata

on infinite words or linear temporal logic (LTL) formulas. We say that an automaton A

is a safety automaton if it recognizes a safety language. Similarly, an LTL formula is

a safety formula if the set of computations that satisfy it form a safety language. Sistla

shows that the problem of determining whether a nondeterministic Büchi automaton or an

LTL formula are safety is PSPACE-complete [Sis94] (see also [AS87]). From the results

in [KV97], it follows that the problem is in PSPACE even when the Büchi automaton is

alternating. On the other hand, when the Büchi automaton is deterministic, the problem can

be solved in linear time [MP92]. Sistla also describes sufficient syntactic requirements for

safe LTL formulas. For example, a formula (in positive normal form) whose only temporal

operators are G (always) and X (next), is a safety formula [Sis94]. Suppose that we want

to verify the correctness of a system with respect to a safety property. Can we use the fact

that the property is known to be a safety property in order to improve general verification

methods? The positive answer to this question is the subject of this paper.

Much previous work on verification of safety properties follow the proof-based ap-

proach to verification [Fra92]. In the proof-based approach, the system is annotated with

assertions and proof rules are used to verify the assertions. In particular, Manna and Pnueli

consider verification of reactive systems with respect to safety properties in [MP92,MP95].

The definition of safety formulas considered in [MP92,MP95] is syntactic: a safety for-

mula is a formula of the form G' where ' is a past formula. The syntactic definition is

equivalent to the definition discussed here [MP92]. While proof-rules approaches are less

sensitive to the size of the state space of the system, they require a heavy user support. Our

work here considers the state-exploration approach to verification, where automatic model

checking [CE81,QS81] is performed in order to verify the correctness of a system with

respect to a specification. Previous work in this subject considers special cases of safety

properties such as invariance checking [GW91,McM92,Val93,MR97], or assume that a

general safety propery is given by the set of its bad prefixes [GW91].

General methods for model checking of linear properties are based on a construc-

tion of a tableau or an automaton A

:

that accepts exactly all the infinite computa-

tions that violate the property [LP85,VW94]. Given a system M and a property ,

verification of M with respect to is reduced to checking the emptiness of the prod-

uct of M and A

:

[VW86]. This check can be performed on-the-fly and symbolically

[CVWY92,GPVW95,TBK95]. When is an LTL formula, the size of A

is exponen-

tial in the length of , and the complexity of verification that follows is PSPACE, with a

matching lower bound [SC85].

Consider a safety property . Let pref () denote the set of all bad prefixes for .

Recall that every computation that violates has a prefix in pref (). We say that an au-

tomaton on finite words is tight for a safety property if it recognizes pref (). Since

every system that violates has a computation with a prefix in pref (), an automaton

tight for is practically more helpful than A
:

. Indeed, reasoning about automata on fi-

nite words is easier than reasoning about automata on infinite words (cf. [HKSV97]). In

particular, when the words are finite, we can use backward or forward symbolic reacha-

bility analysis [BCM+92,IN97]. In addition, using an automaton for bad prefixes, we can

return to the user a finite error trace, which is a bad prefix, and which is often more helpful

than an infinite error trace.

Given a safety property , we construct an automaton tight for . We show that the

construction involves an exponential blow-up in the case is given as a nondeterministic

Büchi automaton, and involves a doubly-exponential blow-up in the case is given in LTL.

These results are surprising, as they indicate that detection of bad prefixes with a nondeter-

ministic automaton has the flavor of determinization. The tight automata we construct are

indeed deterministic. Nevertheless, our construction avoids the difficult determinization of

the Büchi automaton for (cf. [Saf88]) and just uses a subset construction.

Our construction of tight automata reduces the problem of verification of safety proper-

ties to the problem of invariance checking [Fra92,MP92], Indeed, once we take the product

of a tight automaton with the system, we only have to check that we never reach an accept-

ing state of the tight automaton. Invariance checking is amenable to both model checking

techniques [BCM+92,IN97] and deductive verification techniques [BM83,SOR93,MAB+94].

In practice, the verified systems are often very large, and even clever symbolic methods

cannot cope with the state-explosion problem that model checking faces. The way we

construct tight automata also enables, in case the BDDs constructed during the symbolic

reachability test get too large, an analysis of the intermediate data that has been collected.

The analysis can lead to a conclusion that the system does not satisfy the property without

further traversal of the system.

In view of the discouraging blow-ups described above, we release the requirement on

tight automata and seek, instead, an automaton that need not accept all the bad prefixes,

yet must accept at least one bad prefix of every computation that does not satisfy . We say

that such an automaton is fine for . For example, an automaton that recognizes p� � (:p) �

(p _:p) does not accept all the words in pref (Gp), yet is fine for Gp. In practice, almost

all the benefit that one obtain from a tight automaton can also be obtained from a fine

automaton. We show that for natural safety formulas , the construction of an automaton

fine for is as easy as the construction of A

.

In order to formalize the notion of “natural safety formulas”, we partition safety prop-

erties into intentionally, accidantally, and pathologicaly safe properties. While most safety

properties are intentionally safe, accidentally safe and especially pathologically safe prop-

erties contain some redundancy, and we do not expect to see them often in practice. We

show that the automaton A
:

, which accepts exactly all infinite computations that violate

 , can easily (and with no blow-up) be modified to an automaton Atrue
:

on finite words,

which is tight for that is intentionally safe, and is fine for that is accidentally safe. We

present a methodology for model checking of safety properties that is based on the above

classification, uses Atrue
:

instead of A
:

, and thus replaces the search for bad cycles by a

search for bad prefixes.

2 Preliminaries

2.1 Safety languages and formulas

Consider a language L � �

! of infinite words over the alphabet �. A finite word x 2 ��

is a bad prefix for L iff for all y 2 �

!, we have x � y 62 L. A language L is a safety

language iff every w 62 L has a finite bad prefix. For a safety language L, we denote by

pref (L) the set of all bad prefixes for L. We say that a set X � pref (L) is a trap for a

safety language L iff every word w 62 L has at least one prefix in X. We denote all the

traps for L by trap(L).

For a language L � �

! , we use comp(L) to denote the complement of L; i.e.,

comp(L) = �

!

n L. We say that a language L � �

! is a co-safety language iff comp(L)

is a safety language. (The term used in [MP92] is guarantee language.) Equivalently, L is

co-safety iff every w 2 L has a good prefix x 2 �

� such that for all y 2 �

! , we have

x � y 2 L. For a co-safety language L, we denote by co-pref (L) the set of good prefixes

for L. Note that co-pref (L) = pref (comp(L)).

For an LTL formula over a set AP of atomic propositions, let k k denote the set of

computations in (2

AP

)

! that satisfy . We say that is a safety formula iff k k is a safety

language. Also, is a co-safety formula iff k k is a co-safety language or, equivalently,

k: k is a safety language.

2.2 Word automata

Given an alphabet �, an infinite word over � is an infinite sequence w = �

1

� �

2

� � �

of letters in �. We denote by wl the suffix �
l

� �

l+1

� �

l+2

� � � of w. An automaton on

infinite words is A = h�;Q; �;Q

0

; F i, where � is the input alphabet, Q is a finite set

of states, � is a transition function, Q
0

� Q is a set of initial states, and F � Q is an

acceptance condition. When A is deterministic, the size of Q
0

is 1, and � : Q � � ! Q

maps each state and letter to a single successor state. When A is nondeterministic, � :

Q � � ! 2

Q maps each state and letter to a possible set of successor states. Since the

choice of a successor state is existential, we can regard a transition �(q; �) = fq

1

; q

2

; q

3

g

as a disjunction q
1

_ q

2

_ q

3

. Transitions of alternating automata can be arbitrary positive

formulas over Q. We can have, for instance, a transition �(q; �) = (q

1

^ q

2

) _ (q

3

^ q

4

),

meaning that the automaton accepts from state q a suffixwl, starting by �, ofw, if it accepts

w

l+1 from both q
1

and q
2

or from both q
3

and q
4

. Such a transition combines existential

and universal choices. Runs of an alternating automaton are infinite trees, where branches

corresponds to universal choices of the automaton. For example, ifA is an automaton with

an initial state q
0

and �(q
in

; �

0

) = (q

1

_ q

2

)^ (q

3

_ q

4

), then possible runs of A on w have

a root labeled q
in

, have one node in level 1 labeled q
1

or q
2

, and have another node in level

1 labeled q
3

or q
4

. When A is a Büchi automaton on infinite words, a run is accepting iff it

visits infinitely many states from F along each of its branches. The automaton A can also

run on finite words in ��. Then, a run over a word in �n is accepting if it visits states in

F in it all its nodes of level n. A word (either finite or infinite) is accepted by A iff there

exists an accepting run on it. The language of A, denoted L(A), is the set of words that

A accepts. Deterministic and nondeterministic automata can be viewed as special cases of

alternating automata. Formally, an alternating automaton is deterministic if for all q and �,

we have �(q; �) 2 Q[ffalseg, and it is nondeterministic if �(q; �) is always a disjunction.

For a detailed definition of alternating automata see [Var96].

We define the size of an alternating automaton A = h�;Q; �;Q

0

; F i as the sum of jQj

and j�j, where j�j is the sum of the lengths of the formulas in �. We say that the automaton

A over infinite words is a safety (co-safety) automaton iff L(A) is a safety (co-safety) lan-

guage. We use pref (A), co-pref (A), trap(A), and comp(A) to abbreviate pref (L(A)),

co-pref (L(A)), trap(L(A)), and comp(L(A)), respectively. For an automaton A and

a set of states S, we denote by A

S the automaton obtained from A by defining the set

of initial states to be S. We say that an automaton A over infinite words is universal iff

L(A) = �

! . WhenA runs on finite words, it is universal iffL(A) = �

�. An automaton is

empty iff L(A) = ;. A set S of states is universal (resp., rejecting), when AS is universal

(resp., empty). Note that the universality problem for nondeterministic automata is known

to be PSPACE-complete [MS72,Wol82].

3 Detecting Bad Prefixes

Linear properties of nonterminating systems are often specified using automata on infinite

words or linear temporal logic (LTL) formulas. Given an LTL formula , one can build a

nondeterministic Büchi automatonA

that recognizes k k. The size ofA

is, in the worst

case, exponential in [GPVW95,VW94]. In practice, when given a property that happens

to be safe, what we want is a nondeterministic automaton on finite words that detects bad

prefixes. As we discuss in the introduction, such an automaton is easier to reason about. In

this section we construct, from a given safety property, an automaton for its bad prefixes.

We first study the case where the property is given by a nondeterministic Büchi au-

tomaton. When the given automaton A is deterministic, the construction of an automaton

A

0 for pref (A) is straightforward. Indeed, we can obtainA0 from A by defining the set of

accepting states to be the set of states s for which As is empty. Theorem 1 below shows

that when A is a nondeterministic automaton, things are not that simple. While we can

avoid a difficult determinization of A [Saf88], we cannot avoid an exponential blow-up.

Theorem 1. Given a safety nondeterministic Büchi automatonA of size n, the size of an

automaton that recognizes pref (A) is 2�(n).

Proof. We start with the upper bound. Let A = h�;Q; �;Q

0

; F i. Recall that pref (L(A))

contains exactly all prefixes x 2 �

� such that for all y 2 �

! , we have x � y 62 L(A).

Accordingly, the automaton for pref (A) accepts a prefix x iff the set of states that A

could be in after reading x is rejecting. Formally, we define the (deterministic) automaton

A

0

= h�; 2

Q

; �

0

; fQ

0

g; F

0

i, where F 0 contains all the rejecting sets of A, and �0 follows

the subset construction induced by �; that is, for every S 2 2

Q and � 2 �, we have

�

0

(S; �) =

W

s2S

�(s; �).

We now turn to the lower bound. Essentially, it follows from the fact that pref (A)

refers to words that are not accepted by A, and hence, it has the flavor of complemen-

tation. Complementing a nondeterministic automaton on finite words involves an expo-

nential blow-up [MF71]. In fact, one can construct a nondeterministic automaton A =

h�;Q; �;Q

0

; Qi, in which all states are accepting, such that the smallest nondeterministic

automaton that recognizes comp(A) has 2�(jQj) states. (To see this, consider the language

L

n

consisting all all words w such that either jwj < 2n or w = uvz, where juj = jvj = n

and u 6= v.) GivenA as above, let A0 beAwhen regarded as a Büchi automaton on infinite

words. It is not hard to see that pref (A0

) = comp(A). ut

The lower bound in Theorem 1 is not surprising, as complementation of nondetermin-

istic automata involves an exponential blow-up, and, as we demonstrate in the lower-bound

proof, there is a tight relation between pref (A) and comp(A). We could hope, therefore,

that when properties are specified in a negative form (that is, they describe the forbidden

behaviors of the system) or are given in LTL, whose formulas can be negated, detection of

bad prefixes would not be harder than detection of bad computations. In Theorems 2 and 3

we refute this hope.

Theorem 2. Given a co-safety nondeterministic Büchi automaton A of size n, the size of

an automaton that recognizes co-pref (L(A)) is 2�(n).

Proof. The upper bound is similar to the one in Theorem 1, only that now we define the

set of accepting states in A0 as the set of all the universal sets of A. We prove a matching

lower bound. For n � 1, let �
n

= f1; : : : ; n;&g. We define L
n

as the language of all

words w 2 �

!

n

such that w contains at least one & and the letter after the first & is either

& or it has already appeared somewhere before the first &. The language L
n

is a co-safety

language. Indeed, each word in L
n

has a good prefix (e.g., the one that contains the first

& and its successor). We can recognize L
n

with a nondeterministic Büchi automaton with

O(n) states (the automaton guesses the letter that appears after the first &). Obvious good

prefixes for L
n

are 12&&, 123&2, etc. We can recognize these prefixes with a nondeter-

ministic automaton with O(n) states. But L
n

also has some less obvious good prefixes,

like 1234 � � �n& (a permutation of 1 : : :n followed by &). These prefixes are indeed good,

as every suffix we concatenate to them would start in either & or a letter in f1; : : : ; ng

that has appeared before the &. To recognize these prefixes, a nondeterministic automaton

needs to keep track of subsets of f1; : : : ; ng, for which it needs 2n states. Consequently, a

nondeterministic automaton for co-pref (L
n

) must have at least 2n states. ut

We now extend the proof of Theorem 2 to get a doubly-exponential lower bound for

going from a safety LTL formula to a nondeterministic automaton for its bad prefixes. The

idea is similar: while the proof in Theorem 2 uses the exponential lower bound for going

from nondeterministic to deterministic Büchi automata, the proof for this case is a variant

of the doubly exponential lower bound for going from LTL formulas to deterministic Büchi

automata [KV98].

Theorem 3. Given a safety LTL formula, the size of a nondeterministic Büchi automaton

for pref () is doubly exponential in the length of .

In order to get the upper bound in Theorem 3, we apply the exponential construction

in Theorem 1 to the exponential Büchi automaton A

for k k. The construction in Theo-

rem 1 is based on a subset construction for A

, and it requires a check for the universality

of sets of states Q of A

. Such a check corresponds to a validity check for a DNF formula

in which each disjunct corresponds to a state in Q. While the size of the formula can be

exponential in j j, the number of distinct literals in the formula is at most linear in j j,

implying that the the universality of Q can be checked using space polynomial in j j.

Given a safety formula , we say that a nondeterministic automaton A over finite

words is tight for iff L(A) = pref (k k). In view of the lower bounds proven above,

a construction of tight automata may be too expensive. We say that a nondeterministic

automaton A over finite words is fine for iff there exists X 2 trap(k k) such that

L(A) = X. Thus, a fine automaton need not accept all the bad prefixes, yet it must accept

at least one bad prefix of every computation that does not satisfy . In practice, almost

all the benefit that one obtain from a tight automaton can also be obtained from a fine

automaton (we will get back to this point in Section 6). It is an open question whether

there are feasible constructions of fine automata for general safety formulas. In Section 5

we show that for natural safety formulas , the construction of an automaton fine for is

as easy as the construction of an automaton for .

4 Symbolic Verification of Safety Properties

Our construction of tight automata reduces the problem of verification of safety properties

to the problem of invariance checking, which is amenable to a large variety of techniques.

In particular, backward and forward symbolic reachability analysis have proven to be ef-

fective techniques for checking invariant properties on systems with large state spaces

[BCM+92,IN97]. In practice, however, the verified systems are often very large, and even

clever symbolic methods cannot cope with the state-explosion problem that model check-

ing faces. In this section we describe how the the way we construct tight automata enables,

in case the BDDs constructed during the symbolic reachability test get too big, an analysis

of the intermediate data that has been collected. The analysis solves the model-checking

problem without further traversal of the system.

Consider a systemM = hAP;W;R;W

0

; Li, whereW is the set of states,R � W�W

is a transition relation, W
0

is a set of initial states, and L : W ! 2

AP maps each state to

the sets of atomic propositions that hold in it. Let �n(M) be an automaton that accepts all

finite computations of M . Given , let A
:

be the nondeterministic co-safety automaton

for : , thus L(A
:

) = k: k. In the proof of Theorem 2, we construct an automaton

A

0 such that L(A0

) = pref () by following the subset construction of A
:

and defining

the set of accepting states to be the set of universal sets in A
:

. Then, one needs to verify

the invariance that the product �n(M) � A

0 never reaches an accepting state of A0. In

addition to forward and backward symbolic reachability analysis, one could use a vari-

ety of recent techniques for doing semi-exhaustive reachability analysis [RS95,YSAA97],

including standard simulation techniques [LWA98]. Note, however, that if A0 is doubly

exponential in j j, the BDD representation of A0 will use exponentially (in j j) many

Boolean variables.

Another approach is to apply forward reachability analysis to the product M � A

:

of the system M and the automaton A
:

. Formally, let A
:

= h2

AP

; Q; �;Q

0

; F i, and

let M be as above. The product M � A

:

has state space W � Q, and the successors

of a state hw; qi are all pairs hw0

; q

0

i such that R(w;w0

) and q0 2 �(q; L(w)). Forward

symbolic methods use the predicate post(S), which, given a set of S of states (represented

symbolically) returns the successor set of S, that is, the set of all states t such that there

is a transition from some state in S to t. Starting from the initial set S
0

= W

0

� Q

0

,

forward symbolic methods iteratively construct, for i � 0, the set S
i+1

= post(S

i

). The

calculation the S
i

’s proceeds symbolically, and they are represented by BDDs. Doing so,

forward symbolic methods actually follow the subset construction of M � A

:

. Indeed,

for each w 2 W the set Qw
i

= fq : hw; qi 2 S

i

g is the set of states that A
:

that can be

reached via a path of length i inM from a state inW
0

to the state w. Note that this set can

be exponentially (in j j) large resulting possibly in a large BDD; on the other hand, the

number of Boolean variables used to represent A
:

is linear in j j.

The discussion above suggests the following technique for the case we encounter space

problems. Suppose that at some point the BDD for S
i

gets too big. We then check whether

there is a statew such that the setQw
i

is universal. As discussed in Section 3, we can check

the universality of Qw
i

in space polynomial in j j. Note that we do not need to enumerate

all states w and then check Qw
i

. We can enumerate directly the sets Qw
i

, whose number is

at most doubly exponential in j j. It can be shown that M � A

:

is nonempty iff Qw
i

is

universal for some w 2W and i > 0, thus this check solves the model-checking problem

without further traversal of the system.

Note that it is possible to use semi-exhaustive reachability techniques also when an-

alyzing M � A

:

. That is, instead of taking S
i+1

to be post(S

i

) we can take it to be a

subset S0
i+1

of post(S
i

) [RS95,YSAA97]. We have to ensure, however, that S0
i+1

is satu-

rated with respect to states of A
:

[LWA98]. Informally, we are allowed to drop states of

M from S

i+1

, but we are not allowed to drop states of A
:

. Formally, if hw; qi 2 S

0

i+1

and hw; q0i 2 S
i+1

, then hw; q0i 2 S0

i+1

. This ensures that if the semi-exhaustive analysis

follows a bad prefix of length i in M , then Q0w

i

= fq : hw; qi 2 S

0

i

g will be universal.

In the extreme case, we follow only one trace of M , i.e., we simulate M . In that case, we

have that S0
i+1

= fwg �Q

0w

i

. For a related approach see [CES97].

5 Classification of Safety Properties

Consider the safety LTL formula Gp. A bad prefix x forGp must contain a state in which

p does not hold. If the user gets x as an error trace, he can immediately understand why

Gp is violated. Consider now the LTL formula = G(p _ (Xq ^X:q)). The formula

is equivalent toGp and is therefore a safety formula. Moreover, the set of bad prefixes for

 and Gp coincide. Nevertheless, a minimal bad prefix for (e.g., a single state in which

p does not hold) does not tell the whole story about the violation of . Indeed, the latter

depends on the fact thatXq^X:q is unsatisfiable, which (especially in more complicated

examples), may not be trivially noticed by the user. This intuition, of a prefix that “tells

the whole story”, is the base for a classification of safety properties into three distinct

safety levels. We first formalize this intuition in terms of informative prefixes. We assume

that LTL formulas are given in positive normal form, where negation is applied only to

propositions (when we write : , we refer to its positive normal form). In the positive

normal form, we use the operator V as dual to the operator U , and use cl() to denote the

closure of , namely, the set of ’s subformulas.

For an LTL formula and a finite computation � = �

1

��

2

� � ��

n

, with �
i

2 2

AP , we

say that � is informative for iff there exists a mapping L : f1; : : : ; n+1g ! 2

cl() such

that the following hold: (1) : 2 L(1). (2) L(n + 1) is empty. (3) For all 1 � i � n and

' 2 L(i), the following hold.

– If ' is a propositional assertion, it is satisfied by �
i

.

– If ' = '

1

_ '

2

then '
1

2 L(i) or '
2

2 L(i).

– If ' = '

1

^ '

2

then '
1

2 L(i) and '
2

2 L(i).

– If ' = X'

1

, then '
1

2 L(i + 1).

– If ' = '

1

U'

2

, then '
2

2 L(i) or ['
1

2 L(i) and '
1

U'

2

2 L(i + 1)].

– If ' = '

1

V '

2

, then '
2

2 L(i) and ['
1

2 L(i) or '
1

V '

2

2 L(i+ 1)].

Note that the emptiness of L(n + 1) guarantees that all the requirements imposed by

: are fulfilled along �. For example, while the finite computation fpg � ; is informative

forGp (with L(1) = fF:pg,L(2) = fF:p;:pg, and L(3) = ;), it is not informative for

 = G(p_ (Xq ^X:q)). Indeed, as : = F (:p^ (X:q _Xq)), an informative prefix

for must contain at least one state after the first state in which :p holds.

We distinguish between three types of safety formulas.

– A safety formula is intentionally safe iff all the bad prefixes for are informative.

For example, the formula Gp is intentionally safe.

– A safety formula is accidentally safe iff not all the bad prefixes for are informative,

but every computation that violates has an informative bad prefix. For example, the

formulasG(q_XGp)^G(r_XG:p) andG(p_ (Xq^X:q)) are accidentally safe.

– A safety formula is pathologically safe if there is a computation that violates

and has no informative bad prefix. For example, the formula [G(q _ GFp) ^ G(r _

GF:p)]_Gq _Gr is pathologically safe.

Sistla has shown that all temporal formulas in positive normal form constructed with

the temporal connectives X and V are safety formulas [Sis94]. We call such formulas

syntactically safe. The following strengthens Sistla’s result.

Theorem 4. If is syntactically safe, then is intentionally or accidentally safe.

Given an LTL formula in positive normal form, one can build an alternating Büchi

automaton A

= h2

AP

; Q; �;Q

0

; F i such that L(A

) = k k. Essentially, each state

of L(A

) corresponds to a subformula of , and its transitions follow the semantics of

LTL [Var96]. We define the alternating Büchi automaton Atrue

= h2

AP

; Q; �;Q

0

; ;i by

redefining the set of accepting states to be the empty set. So, while in A

a copy of the

automaton may accept by either reaching a state from which it proceed to true or visiting

states of the form '

1

V '

2

infinitely often, in A

true

all copies must reach a state from

which they proceed to true. Accordingly, Atrue

accepts exactly these computations that

have a finite prefix that is informative for . To see this, note that such computations

can be accepted by a run of A

in which all the copies eventually reach a state that is

associated with propositional assertions that are satisfied. Now, let �n(Atrue

) be Atrue

when regarded as an automaton on finite words.

Theorem 5. For every safety formula , the automaton �n(Atrue
:

) accepts exactly all the

prefixes that are informative for .

Corollary 6. Consider a safety formula . If is intentionally safe, then �n(A

true

:

) is

tight for . Also, if is accidentally safe, then �n(A

true

:

) is fine for .

Theorem 7. Deciding whether a given formula is pathologicallysafe is PSPACE-complete.

Proof. Consider a formula . Recall that the automaton Atrue

accepts exactly these com-

putations that have a finite prefix that is informative for . Hence, is not pathologi-

cally safe iff every computation that does not satisfy is accepted by Atrue
:

. Accordingly,

checking whether is pathologically safe can be reduced to checking the containment of

L(A

:

) in L(Atrue
:

). Since the size of A

is linear in the length of and containment for

alternating Büchi automata can be checked in polynomial space [KV97], we are done. For

the lower bound, we do a reduction from the problem of deciding whether a given formula

is a safety formula. Consider a formula , and let p; q, and r be atomic propositions not in

 . The formula ' = [G(q _GFp) ^G(r _GF:p)]_Gq _Gr is pathologically safe. It

can be shown that is a safety formula iff ^ ' is pathologically safe. ut

Note that the lower bound in Theorem 7 implies that the reverse direction of Theorem 4

does not hold.

6 A Methodology

In Section 5, we partitioned safety formulas into three safety levels and showed that for

some formulas, we can circumvent the blow-up involved in constructing a tight automa-

ton for the bad prefixes. In particular, we showed that the automaton �n(A

true

:

), which

is linear in the length of , is tight for that is intentionally safe and is fine for that

is accidentally safe. In this section we describe a methodology for efficient verification of

safety properties that is based on these observations. Consider a system M and a safety

LTL formula . Let �n(M) be a nondeterministic automaton on finite words that accepts

the prefixes of computations ofM , and let U true
:

be the nondeterministic automaton on fi-

nite words equivalent to the alternating automaton �n(Atrue
:

) [CKS81]. The size of U true
:

is exponential in the size of �n(Atrue
:

), hence it is exponential in the length of . Given

M and , we suggest to proceed as follows (see the figure below).

Y

M is correct Consult user

�n(M)� U

true

:

?

= ;

M is incorrect

N

YN

Return error trace Is pathologically safe?

Instead of checking the emptiness ofM �A

:

, verification starts by checking �n(M)

with respect to U

true

:

. Since both automata refer to finite words, this can be done using

finite forward reachability analysis. If the product �n(M)� U

true

:

is not empty, we return

a word w in the intersection, namely, a bad prefix for that is generated by M1. If the

product �n(M)� U

true

:

is empty, then, as U true
:

is fine for intentionally and accidentally

safe formulas, there may be two reasons for this. One, is thatM satisfies , and the second

is that is pathologically safe. Therefore, we next check whether is pathologically safe.

(Note that for syntactically safe formulas this check is unnecessary, by Theorem 4.) If it is

not pathologically safe, we conclude thatM satisfies . Otherwise, we tell the user that his

formula is pathologically safe, indicating that his specification is needlessly complicated

(accidentally and pathologically safe formulas contain redundancy). At this point, the user

would probably be surprised that his formula was a safety formula (if he had known it is

safety, he would have simplified it to an intentionally safe formula – a feasable automatic

simlification of such formulas is an open problem). If the user wishes to continue with

this formula, we give up using the fact that is safety and proceed with usual LTL model

checking, thus we check the emptiness of M � A

:

. (Recall that the symbolic algorithm

for emptiness of Büchi automata is in the worst case quadratic [HKSV97,TBK95].) Note

that at this point, the error trace that the user gets if M does not satisfy consists of a

prefix and a cycle, yet since the user does not want to change his formula, he probably

has no idea why it is a safety formula and a finite non-informative error trace would not

1 Note that since may not be intentionally safe, the automaton U

true

:

may not be tight for , thus

while w is a minimal informative bad prefix, it may not be a minimal bad prefix.

help him). If the user prefers, or if M is very large (making the discovery of bad cycles

infeasible), we can build an automaton for pref (), hoping that by learning it, the user

would understand how to simplify his formula or that, in spite of the potential blow-up in

 , finite forward reachability would work better.

Acknowledgement. The second author is grateful to Avner Landver for stimulating dis-

cussions.

References

[AS85] B. Alpern and F.B. Schneider. Defining liveness. Information processing letters, 21:181–

185, 1985.

[AS87] B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed computing,

2:117–126, 1987.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model

checking: 1020 states and beyond. Information and Computation, 98(2):142–170, June

1992.

[BM83] R.S. Boyer and J.S. Moore. Proof-checking, theorem-proving and program verifica-

tion. Technical Report 35, Institute for Computing Science and Computer Applications,

University of Texas at Austin, January 1983.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In Proc. Workshop on Logic of Programs, LNCS 131,

pp. 52–71, 1981.

[CES97] W. Canfield, E.A. Emerson, and A. Saha. Checking formal specifications under simula-

tion. In Proc. International Conference on Computer Design, pp. 455–460, 1997.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journalof the Association

for Computing Machinery, 28(1):114–133, January 1981.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algo-

rithms for the verification of temporal properties. Formal Methods in System Design,

1:275–288, 1992.

[Eme83] E.A. Emerson. Alternative semantics for temporal logics. Theoretical Computer Sci-

ence, 26:121–130, 1983.

[Fra92] N. Francez. Program verification. International Computer Science. Addison-Weflay,

1992.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification

of linear temporal logic. In Protocol Specification, Testing, and Verification, pp. 3–18.

Chapman & Hall, August 1995.

[GW91] P. Godefroid and P. Wolper. Using partial orders for the efficient verification of deadlock

freedom and safety properties. In Proc. 3rd CAV, LNCS 575, pp. 332–342, 1991.

[HKSV97] R.H. Hardin, R.P. Kurshan, S.K. Shukla, and M.Y. Vardi. A new heuristic for bad cycle

detection using BDDs. In Proc. 9th CAV, LNCS 1254, pp. 268–278, 1997.

[IN97] H. Iwashita and T. Nakata. Forward model checking techniques oriented to buggy de-

signs. In Proc. IEEE/ACM ICCAD, pp. 400–404, 1997.

[KV97] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. In Proc.

5th ISTCS, pp. 147–158. IEEE Computer Society Press, 1997.

[KV98] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-time

to branching-time. In Proc. 13th LICS, pp. 81–92, June 1998.

[Lam85] L. Lamport. Logical foundation. In Distributed systems - methods and tools for specifi-

cation, LNCS 190, 1985.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy

their linear specification. In Proc. 12th POPL, pp. 97–107, 1985.

[LWA98] Y. Luo, T. Wongsonegoro, and A. Aziz. Hybrid techniques for fast functional simulation.

In Proc. 35th DAC. IEEE Computer Society, 1998.

[MAB+94] Z. Manna, A. Anuchitanukul, N. Bjorner, A. Browne, E. Chang, M. Colon, L. De Al-

faro, H. Devarajan, H. Sipma, and T. Uribe. STeP: The Stanford Temporal Prover. Tech-

nical Report STAN-CS-TR-94-1518, Dept. of Computer Science, Stanford University,

1994.

[McM92] K. McMillan. Using unfolding to avoid the state explosion problem in the verification

of asynchronous circuits. In Proc. 4th CAV, LNCS 663, pp. 164–174, 1992.

[MF71] A.R. Meyer and M.J. Fischer. Economy of description by automata, grammars, and

formal systems. In Proc. 12th IEEE Symp. on Switching and Automata Theory, pp.

188–191, 1971.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, Berlin, January 1992.

[MP95] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Safety. Springer-Verlag, New York, 1995.

[MR97] S. Melzer and S. Roemer. Deadlock checking using net unfoldings. In Proc. 9th CAV,

LNCS 1254, pp. 364–375, 1997.

[MS72] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions

with squaring requires exponential time. In Proc. 13th IEEE Symp. on Switching and

Automata Theory, pp. 125–129, 1972.

[OL82] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM

Transactions on Programming Languages and Systems, 4(3):455–495, July 1982.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar.

In Proc. 5th International Symp. on Programming, LNCS 137, pp. 337–351, 1981.

[RS95] K. Ravi and F. Somenzi. High-density reachability analysis. In Proc. CAD, pp. 154–158,

1995.

[Saf88] S. Safra. On the complexity of !-automata. In Proc. 29th FOCS, pp. 319–327, White

Plains, 1988.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.

Journal ACM, 32:733–749, 1985.

[Sis94] A.P. Sistla. Satefy, liveness and fairness in temporal logic. Formal Aspects of Computing,

6:495–511, 1994.

[SOR93] R.E. Shankar, S. Owre, and J.M. Rushby. The PVS proof checker: A reference manual

(beta release). Technical report, Computer Science laboratory, SRI International, Menlo

Park, California, March 1993.

[TBK95] H.J. Touati, R.K. Brayton, and R. Kurshan. Testing language containment for !-

automata using BDD’s. Information and Computation, 118(1):101–109, April 1995.

[Val93] A. Valmari. On-the-fly verification with stubborn sets. In Proc. 5nd CAV, LNCS 697,

1993.

[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and

G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, LNCS 1043,

pp. 238–266, 1996.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri-

fication. In Proc. 1st LICS, pp. 322–331, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and

Computation, 115(1):1–37, November 1994.

[Wol82] P. Wolper. Synthesis of Communicating Processes from Temporal Logic Specifications.

PhD thesis, Stanford University, 1982.

[YSAA97] J. Yuan, J. Shen, J. Abraham, and A. Aziz. On combining formal and informal verifica-

tion. In Proc 9th CAV, LNCS 1254, pp. 376–387, 1997.

Model Checking of Safety Properties

Orna Kupferman1? and Moshe Y. Vardi2??

1 Hebrew University, The institute of Computer Science, Jerusalem 91904, Israel

Email: orna@cs.huji.ac.il, URL: http://www.cs.huji.ac.il/

�

orna

2 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.

Email: vardi@cs.rice.edu, URL: http://www.cs.rice.edu/

�

vardi

Abstract. Of special interest in formal verification are safety properties, which assert that

the system always stays within some allowed region. A computation that violates a general

linear property reaches a bad cycle, which witnesses the violation of the property. Accord-

ingly, current methods and tools for model checking of linear properties are based on a

search for bad cycles. A symbolic implementation of such a search involves the calculation

of a nested fixed-point expression over the system’s state space, and is often very difficult.

Every computation that violates a safety property has a finite prefix along which the prop-

erty is violated. We use this fact in order to base model checking of safety properties on

a search for finite bad prefixes. Such a search can be performed using a simple forward

or backward symbolic reachability check. A naive methodology that is based on such a

search involves a construction of an automaton (or a tableau) that is doubly exponential

in the property. We present an analysis of safety properties that enables us to prevent the

doubly-exponential blow up and to use the same automaton used for model checking of

general properties, replacing the search for bad cycles by a search for bad prefixes.

1 Introduction

Today’s rapid development of complex and safety-critical systems requires reliable veri-

fication methods. In formal verification, we verify that a system meets a desired property

by checking that a mathematical model of the system meets a formal specification that

describes the property. Of special interest are properties asserting that observed behavior

of the system always stays within some allowed set of finite behaviors, in which nothing

“bad” happens. For example, we may want to assert that every message received was pre-

viously sent. Such properties of systems are called safety properties. Intuitively, a property

 is a safety property if every violation of occurs after a finite execution of the system.

In our example, if in a computation of the system a message is received without previously

being sent, this occurs after some finite execution of the system.

In order to define safety properties formally, we refer to computations of a nontermi-

nating system as infinite words over an alphabet �. Typically,� = 2

AP , where AP is the

set of the system’s atomic propositions. Consider a language L of infinite words over �.

A finite word x over � is a bad prefix for L iff for all infinite words y over �, the concate-

nation x � y of x and y is not in L. Thus, a bad prefix for L is a finite word that cannot be

? Part of this work was done when this author was visiting Cadence Berkeley Laboratories.
?? Supported in part by the NSF grants CCR-9628400 and CCR-9700061, and by a grant from the

Intel Corporation. Part of this work was done when this author was a Varon Visiting Professor at

the Weizmann Institute of Science.

extended to an infinite word inL. A language L is a safety language if every word not inL

has a finite bad prefix. For example, L = f0

!

; 1

!

g � f0; 1g

! is a safety language: every

word not in L contains 01 or 10, and a prefix that ends in one of these sequences cannot

be extended to a word in L. The definition of safety we consider here is given in [AS85],

it coincides with the definition of limit closure defined in [Eme83], and is different from

the definition in [Lam85], which also refers to the property being closed under stuttering.

Linear properties of nonterminating systems are often specified using Büchi automata

on infinite words or linear temporal logic (LTL) formulas. We say that an automaton A

is a safety automaton if it recognizes a safety language. Similarly, an LTL formula is

a safety formula if the set of computations that satisfy it form a safety language. Sistla

shows that the problem of determining whether a nondeterministic Büchi automaton or an

LTL formula are safety is PSPACE-complete [Sis94] (see also [AS87]). From the results

in [KV97], it follows that the problem is in PSPACE even when the Büchi automaton is

alternating. On the other hand, when the Büchi automaton is deterministic, the problem can

be solved in linear time [MP92]. Sistla also describes sufficient syntactic requirements for

safe LTL formulas. For example, a formula (in positive normal form) whose only temporal

operators are G (always) and X (next), is a safety formula [Sis94]. Suppose that we want

to verify the correctness of a system with respect to a safety property. Can we use the fact

that the property is known to be a safety property in order to improve general verification

methods? The positive answer to this question is the subject of this paper.

Much previous work on verification of safety properties follow the proof-based ap-

proach to verification [Fra92]. In the proof-based approach, the system is annotated with

assertions and proof rules are used to verify the assertions. In particular, Manna and

Pnueli consider verification of reactive systems with respect to safety properties in [MP92,

MP95]. The definition of safety formulas considered in [MP92, MP95] is syntactic: a

safety formula is a formula of the form G' where ' is a past formula. The syntactic defi-

nition is equivalent to the definition discussed here [MP92]. While proof-rules approaches

are less sensitive to the size of the state space of the system, they require a heavy user

support. Our work here considers the state-exploration approach to verification, where au-

tomatic model checking [CE81, QS81] is performed in order to verify the correctness of

a system with respect to a specification. Previous work in this subject considers special

cases of safety properties such as invariance checking [GW91, McM92, Val93, MR97], or

assume that a general safety property is given by the set of its bad prefixes [GW91].

General methods for model checking of linear properties are based on a construc-

tion of a tableau or an automaton A

:

that accepts exactly all the infinite computa-

tions that violate the property [LP85, VW94]. Given a system M and a property ,

verification of M with respect to is reduced to checking the emptiness of the prod-

uct of M and A

:

[VW86]. This check can be performed on-the-fly and symbolically

[CVWY92, GPVW95, TBK95]. When is an LTL formula, the size of A

is exponen-

tial in the length of , and the complexity of verification that follows is PSPACE, with a

matching lower bound [SC85].

Consider a safety property . Let pref () denote the set of all bad prefixes for .

Recall that every computation that violates has a prefix in pref (). We say that an au-

tomaton on finite words is tight for a safety property if it recognizes pref (). Since

every system that violates has a computation with a prefix in pref (), an automaton

tight for is practically more helpful than A
:

. Indeed, reasoning about automata on fi-

nite words is easier than reasoning about automata on infinite words (cf. [HKSV97]). In

particular, when the words are finite, we can use backward or forward symbolic reacha-

bility analysis [BCM+92, IN97]. In addition, using an automaton for bad prefixes, we can

return to the user a finite error trace, which is a bad prefix, and which is often more helpful

than an infinite error trace.

Given a safety property , we construct an automaton tight for . We show that the

construction involves an exponential blow-up in the case is given as a nondeterministic

Büchi automaton, and involves a doubly-exponential blow-up in the case is given in LTL.

These results are surprising, as they indicate that detection of bad prefixes with a nondeter-

ministic automaton has the flavor of determinization. The tight automata we construct are

indeed deterministic. Nevertheless, our construction avoids the difficult determinization of

the Büchi automaton for (cf. [Saf88]) and just uses a subset construction.

Our construction of tight automata reduces the problem of verification of safety proper-

ties to the problem of invariance checking [Fra92, MP92], Indeed, once we take the prod-

uct of a tight automaton with the system, we only have to check that we never reach an ac-

cepting state of the tight automaton. Invariance checking is amenable to both model check-

ing techniques [BCM+92, IN97] and deductive verification techniques [BM83, SOR93,

MAB+94]. In practice, the verified systems are often very large, and even clever sym-

bolic methods cannot cope with the state-explosion problem that model checking faces.

The way we construct tight automata also enables, in case the BDDs constructed during

the symbolic reachability test get too large, an analysis of the intermediate data that has

been collected. The analysis can lead to a conclusion that the system does not satisfy the

property without further traversal of the system.

In view of the discouraging blow-ups described above, we release the requirement

on tight automata and seek, instead, an automaton that need not accept all the bad pre-

fixes, yet must accept at least one bad prefix of every computation that does not satisfy .

We say that such an automaton is fine for . For example, an automaton that recognizes

p

�

� (:p) � (p _ :p) does not accept all the words in pref (Gp), yet is fine for Gp. In

practice, almost all the benefit that one obtain from a tight automaton can also be obtained

from a fine automaton. We show that for natural safety formulas , the construction of an

automaton fine for is as easy as the construction of A

. In order to formalize the notion

of “natural safety formulas”, we partition safety properties into intentionally, accidentally,

and pathologically safe properties. While most safety properties are intentionally safe, ac-

cidentally safe and especially pathologically safe properties contain some redundancy, and

we do not expect to see them often in practice. We show that the automaton A
:

, which

accepts exactly all infinite computations that violate , can easily (and with no blow-up)

be modified to an automaton Atrue
:

on finite words, which is tight for that is intention-

ally safe, and is fine for that is accidentally safe. We present a methodology for model

checking of safety properties that is based on the above classification, uses Atrue
:

instead

of A
:

, and thus replaces the search for bad cycles by a search for bad prefixes.

2 Preliminaries

2.1 Safety languages and formulas

Consider a language L � �

! of infinite words over the alphabet �. A finite word x 2 ��

is a bad prefix for L iff for all y 2 �

! , we have x � y 62 L. A language L is a safety

language iff every w 62 L has a finite bad prefix. For a safety language L, we denote by

pref (L) the set of all bad prefixes for L. We say that a set X � pref (L) is a trap for a

safety language L iff every word w 62 L has at least one prefix in X. We denote all the

traps for L by trap(L).

For a language L � �

! , we use comp(L) to denote the complement of L; i.e.,

comp(L) = �

!

n L. We say that a language L � �

! is a co-safety language iff comp(L)

is a safety language. (The term used in [MP92] is guarantee language.) Equivalently, L is

co-safety iff every w 2 L has a good prefix x 2 �

� such that for all y 2 �

! , we have

x � y 2 L. For a co-safety language L, we denote by co-pref (L) the set of good prefixes

for L. Note that co-pref (L) = pref (comp(L)).

For an LTL formula over a set AP of atomic propositions, let k k denote the set of

computations in (2

AP

)

! that satisfy . We say that is a safety formula iff k k is a safety

language. Also, is a co-safety formula iff k k is a co-safety language or, equivalently,

k: k is a safety language.

2.2 Word automata

Given an alphabet �, an infinite word over � is an infinite sequence w = �

1

� �

2

� � �

of letters in �. We denote by wl the suffix �
l

� �

l+1

� �

l+2

� � � of w. An automaton on

infinite words is A = h�;Q; �;Q

0

; F i, where � is the input alphabet, Q is a finite set

of states, � is a transition function, Q
0

� Q is a set of initial states, and F � Q is an

acceptance condition. When A is deterministic, the size of Q
0

is 1, and � : Q � � ! Q

maps each state and letter to a single successor state. When A is nondeterministic, � :

Q � � ! 2

Q maps each state and letter to a possible set of successor states. Since the

choice of a successor state is existential, we can regard a transition �(q; �) = fq

1

; q

2

; q

3

g

as a disjunction q
1

_ q

2

_ q

3

. Transitions of alternating automata can be arbitrary positive

formulas over Q. We can have, for instance, a transition �(q; �) = (q

1

^ q

2

) _ (q

3

^ q

4

),

meaning that the automaton accepts from state q a suffixwl, starting by �, ofw, if it accepts

w

l+1 from both q
1

and q
2

or from both q
3

and q
4

. Such a transition combines existential

and universal choices. Runs of an alternating automaton are infinite trees, where branches

corresponds to universal choices of the automaton. For example, ifA is an automaton with

an initial state q
0

and �(q
in

; �

0

) = (q

1

_ q

2

)^ (q

3

_ q

4

), then possible runs of A onw have

a root labeled q
in

, have one node in level 1 labeled q
1

or q
2

, and have another node in level

1 labeled q
3

or q
4

. When A is a Büchi automaton on infinite words, a run is accepting iff it

visits infinitely many states from F along each of its branches. The automaton A can also

run on finite words in ��. Then, a run over a word in �n is accepting if it visits states in

F in it all its nodes of level n. A word (either finite or infinite) is accepted by A iff there

exists an accepting run on it. The language of A, denoted L(A), is the set of words that

A accepts. Deterministic and nondeterministic automata can be viewed as special cases of

alternating automata. Formally, an alternating automaton is deterministic if for all q and �,

we have �(q; �) 2 Q[ffalseg, and it is nondeterministic if �(q; �) is always a disjunction.

For a detailed definition of alternating automata see [Var96].

We define the size of an alternating automaton A = h�;Q; �;Q

0

; F i as the sum of jQj

and j�j, where j�j is the sum of the lengths of the formulas in �. We say that the automaton

A over infinite words is a safety (co-safety) automaton iff L(A) is a safety (co-safety) lan-

guage. We use pref (A), co-pref (A), trap(A), and comp(A) to abbreviate pref (L(A)),

co-pref (L(A)), trap(L(A)), and comp(L(A)), respectively. For an automaton A and

a set of states S, we denote by AS the automaton obtained from A by defining the set

of initial states to be S. We say that an automaton A over infinite words is universal iff

L(A) = �

! . When A runs on finite words, it is universal iffL(A) = �

�. An automaton is

empty iff L(A) = ;. A set S of states is universal (resp., rejecting), when AS is universal

(resp., empty). Note that the universality problem for nondeterministic automata is known

to be PSPACE-complete [MS72, Wol82].

3 Detecting Bad Prefixes

Linear properties of nonterminating systems are often specified using automata on infinite

words or linear temporal logic (LTL) formulas. Given an LTL formula , one can build a

nondeterministic Büchi automatonA

that recognizes k k. The size ofA

is, in the worst

case, exponential in [GPVW95, VW94]. In practice, when given a property that happens

to be safe, what we want is a nondeterministic automaton on finite words that detects bad

prefixes. As we discuss in the introduction, such an automaton is easier to reason about. In

this section we construct, from a given safety property, an automaton for its bad prefixes.

We first study the case where the property is given by a nondeterministic Büchi au-

tomaton. When the given automaton A is deterministic, the construction of an automaton

A

0 for pref (A) is straightforward. Indeed, we can obtain A0 from A by defining the set of

accepting states to be the set of states s for which As is empty. Theorem 1 below shows

that when A is a nondeterministic automaton, things are not that simple. While we can

avoid a difficult determinization of A [Saf88], we cannot avoid an exponential blow-up.

Theorem 1. Given a safety nondeterministic Büchi automaton A of size n, the size of an

automaton that recognizes pref (A) is 2�(n).

Proof: We start with the upper bound. Let A = h�;Q; �;Q

0

; F i. Recall that pref (L(A))

contains exactly all prefixes x 2 �

� such that for all y 2 �

! , we have x � y 62 L(A).

Accordingly, the automaton for pref (A) accepts a prefix x iff the set of states that A

could be in after reading x is rejecting. Formally, we define the (deterministic) automaton

A

0

= h�; 2

Q

; �

0

; fQ

0

g; F

0

i, where F 0 contains all the rejecting sets of A, and �0 follows

the subset construction induced by �; that is, for every S 2 2

Q and � 2 �, we have

�

0

(S; �) =

W

s2S

�(s; �).

We now turn to the lower bound. Essentially, it follows from the fact that pref (A)

refers to words that are not accepted by A, and hence, it has the flavor of complemen-

tation. Complementing a nondeterministic automaton on finite words involves an expo-

nential blow-up [MF71]. In fact, one can construct a nondeterministic automaton A =

h�;Q; �;Q

0

; Qi, in which all states are accepting, such that the smallest nondeterministic

automaton that recognizes comp(A) has 2�(jQj) states. (To see this, consider the language

L

n

consisting all all words w such that either jwj < 2n or w = uvz, where juj = jvj = n

and u 6= v.) GivenA as above, letA0 beAwhen regarded as a Büchi automaton on infinite

words. It is not hard to see that pref (A0

) = comp(A). ut

The lower bound in Theorem 1 is not surprising, as complementation of nondetermin-

istic automata involves an exponential blow-up, and, as we demonstrate in the lower-bound

proof, there is a tight relation between pref (A) and comp(A). We could hope, therefore,

that when properties are specified in a negative form (that is, they describe the forbidden

behaviors of the system) or are given in LTL, whose formulas can be negated, detection

of bad prefixes would not be harder than detection of bad computations. In Theorems 2

and 3 we refute this hope.

Theorem 2. Given a co-safety nondeterministic Büchi automaton A of size n, the size of

an automaton that recognizes co-pref (L(A)) is 2�(n).

Proof: The upper bound is similar to the one in Theorem 1, only that now we define the

set of accepting states in A0 as the set of all the universal sets of A. We prove a matching

lower bound. For n � 1, let �
n

= f1; : : : ; n;&g. We define L
n

as the language of all

words w 2 �

!

n

such that w contains at least one & and the letter after the first & is either

& or it has already appeared somewhere before the first &. The language L
n

is a co-safety

language. Indeed, each word in L
n

has a good prefix (e.g., the one that contains the first

& and its successor). We can recognize L
n

with a nondeterministic Büchi automaton with

O(n) states (the automaton guesses the letter that appears after the first &). Obvious good

prefixes for L
n

are 12&&, 123&2, etc. We can recognize these prefixes with a nondeter-

ministic automaton with O(n) states. But L
n

also has some less obvious good prefixes,

like 1234 � � �n& (a permutation of 1 : : :n followed by &). These prefixes are indeed good,

as every suffix we concatenate to them would start in either & or a letter in f1; : : : ; ng

that has appeared before the &. To recognize these prefixes, a nondeterministic automaton

needs to keep track of subsets of f1; : : : ; ng, for which it needs 2n states. Consequently, a

nondeterministic automaton for co-pref (L
n

) must have at least 2n states. ut

We now extend the proof of Theorem 2 to get a doubly-exponential lower bound for

going from a safety LTL formula to a nondeterministic automaton for its bad prefixes. The

idea is similar: while the proof in Theorem 2 uses the exponential lower bound for going

from nondeterministic to deterministic Büchi automata, the proof for this case is a variant

of the doubly exponential lower bound for going from LTL formulas to deterministic Büchi

automata [KV98].

Theorem 3. Given a safety LTL formula, the size of a nondeterministic Büchi automaton

for pref () is doubly exponential in the length of .

In order to get the upper bound in Theorem 3, we apply the exponential construction

in Theorem 1 to the exponential Büchi automaton A

for k k. The construction in Theo-

rem 1 is based on a subset construction for A

, and it requires a check for the universality

of sets of states Q of A

. Such a check corresponds to a validity check for a DNF formula

in which each disjunct corresponds to a state in Q. While the size of the formula can be

exponential in j j, the number of distinct literals in the formula is at most linear in j j,

implying that the the universality of Q can be checked using space polynomial in j j.

Given a safety formula , we say that a nondeterministic automaton A over finite

words is tight for iff L(A) = pref (k k). In view of the lower bounds proven above,

a construction of tight automata may be too expensive. We say that a nondeterministic

automaton A over finite words is fine for iff there exists X 2 trap(k k) such that

L(A) = X. Thus, a fine automaton need not accept all the bad prefixes, yet it must accept

at least one bad prefix of every computation that does not satisfy . In practice, almost

all the benefit that one obtain from a tight automaton can also be obtained from a fine

automaton (we will get back to this point in Section 6). It is an open question whether

there are feasible constructions of fine automata for general safety formulas. In Section 5

we show that for natural safety formulas , the construction of an automaton fine for is

as easy as the construction of an automaton for .

4 Symbolic Verification of Safety Properties

Our construction of tight automata reduces the problem of verification of safety properties

to the problem of invariance checking, which is amenable to a large variety of techniques.

In particular, backward and forward symbolic reachability analysis have proven to be ef-

fective techniques for checking invariant properties on systems with large state spaces

[BCM+92, IN97]. In practice, however, the verified systems are often very large, and even

clever symbolic methods cannot cope with the state-explosion problem that model check-

ing faces. In this section we describe how the the way we construct tight automata enables,

in case the BDDs constructed during the symbolic reachability test get too big, an analysis

of the intermediate data that has been collected. The analysis solves the model-checking

problem without further traversal of the system.

Consider a systemM = hAP;W;R;W

0

; Li, whereW is the set of states,R � W�W

is a transition relation, W
0

is a set of initial states, and L : W ! 2

AP maps each state to

the sets of atomic propositions that hold in it. Let �n(M) be an automaton that accepts all

finite computations of M . Given , let A
:

be the nondeterministic co-safety automaton

for : , thus L(A
:

) = k: k. In the proof of Theorem 2, we construct an automaton A0

such that L(A0

) = pref () by following the subset construction of A
:

and defining the

set of accepting states to be the set of universal sets in A
:

. Then, one needs to verify

the invariance that the product �n(M) � A

0 never reaches an accepting state of A0. In

addition to forward and backward symbolic reachability analysis, one could use a variety

of recent techniques for doing semi-exhaustive reachability analysis [RS95, YSAA97],

including standard simulation techniques [LWA98]. Note, however, that if A0 is doubly

exponential in j j, the BDD representation of A0 will use exponentially (in j j) many

Boolean variables.

Another approach is to apply forward reachability analysis to the product M � A

:

of the system M and the automaton A
:

. Formally, let A
:

= h2

AP

; Q; �;Q

0

; F i, and

let M be as above. The product M � A

:

has state space W � Q, and the successors

of a state hw; qi are all pairs hw0

; q

0

i such that R(w;w0

) and q0 2 �(q; L(w)). Forward

symbolic methods use the predicate post(S), which, given a set of S of states (represented

symbolically) returns the successor set of S, that is, the set of all states t such that there

is a transition from some state in S to t. Starting from the initial set S
0

= W

0

� Q

0

,

forward symbolic methods iteratively construct, for i � 0, the set S
i+1

= post(S

i

). The

calculation the S
i

’s proceeds symbolically, and they are represented by BDDs. Doing so,

forward symbolic methods actually follow the subset construction of M � A

:

. Indeed,

for each w 2 W the set Qw
i

= fq : hw; qi 2 S

i

g is the set of states that A
:

that can be

reached via a path of length i inM from a state inW
0

to the statew. Note that this set can

be exponentially (in j j) large resulting possibly in a large BDD; on the other hand, the

number of Boolean variables used to represent A
:

is linear in j j.

The discussion above suggests the following technique for the case we encounter space

problems. Suppose that at some point the BDD for S
i

gets too big. We then check whether

there is a statew such that the set Qw
i

is universal. As discussed in Section 3, we can check

the universality of Qw
i

in space polynomial in j j. Note that we do not need to enumerate

all states w and then check Qw
i

. We can enumerate directly the sets Qw
i

, whose number is

at most doubly exponential in j j. It can be shown that M � A

:

is nonempty iff Qw
i

is

universal for some w 2 W and i > 0, thus this check solves the model-checking problem

without further traversal of the system.

Note that it is possible to use semi-exhaustive reachability techniques also when an-

alyzing M � A

:

. That is, instead of taking S
i+1

to be post(S

i

) we can take it to be a

subset S0

i+1

of post(S
i

) [RS95, YSAA97]. We have to ensure, however, that S0

i+1

is sat-

urated with respect to states of A
:

[LWA98]. Informally, we are allowed to drop states

of M from S

i+1

, but we are not allowed to drop states of A
:

. Formally, if hw; qi 2 S0

i+1

and hw; q0i 2 S
i+1

, then hw; q0i 2 S0

i+1

. This ensures that if the semi-exhaustive analysis

follows a bad prefix of length i in M , then Q0w

i

= fq : hw; qi 2 S

0

i

g will be universal.

In the extreme case, we follow only one trace of M , i.e., we simulate M . In that case, we

have that S0

i+1

= fwg �Q

0w

i

. For a related approach see [CES97].

5 Classification of Safety Properties

Consider the safety LTL formula Gp. A bad prefix x for Gp must contain a state in which

p does not hold. If the user gets x as an error trace, he can immediately understand why

Gp is violated. Consider now the LTL formula = G(p _ (Xq ^X:q)). The formula

is equivalent toGp and is therefore a safety formula. Moreover, the set of bad prefixes for

 and Gp coincide. Nevertheless, a minimal bad prefix for (e.g., a single state in which

p does not hold) does not tell the whole story about the violation of . Indeed, the latter

depends on the fact thatXq^X:q is unsatisfiable, which (especially in more complicated

examples), may not be trivially noticed by the user. This intuition, of a prefix that “tells

the whole story”, is the base for a classification of safety properties into three distinct

safety levels. We first formalize this intuition in terms of informative prefixes. We assume

that LTL formulas are given in positive normal form, where negation is applied only to

propositions (when we write : , we refer to its positive normal form). In the positive

normal form, we use the operator V as dual to the operator U , and use cl() to denote the

closure of , namely, the set of ’s subformulas.

For an LTL formula and a finite computation � = �

1

� �

2

� � ��

n

, with �
i

2 2

AP , we

say that � is informative for iff there exists a mapping L : f1; : : : ; n+1g ! 2

cl() such

that the following hold: (1) : 2 L(1). (2) L(n + 1) is empty. (3) For all 1 � i � n and

' 2 L(i), the following hold.

– If ' is a propositional assertion, it is satisfied by �
i

.

– If ' = '

1

_ '

2

then '
1

2 L(i) or '
2

2 L(i).

– If ' = '

1

^ '

2

then '
1

2 L(i) and '
2

2 L(i).

– If ' = X'

1

, then '
1

2 L(i + 1).

– If ' = '

1

U'

2

, then '
2

2 L(i) or ['
1

2 L(i) and '
1

U'

2

2 L(i + 1)].

– If ' = '

1

V '

2

, then '
2

2 L(i) and ['
1

2 L(i) or '
1

V '

2

2 L(i + 1)].

Note that the emptiness of L(n + 1) guarantees that all the requirements imposed by

: are fulfilled along �. For example, while the finite computation fpg � ; is informative

for Gp (with L(1) = fF:pg,L(2) = fF:p;:pg, and L(3) = ;), it is not informative for

 = G(p_ (Xq ^X:q)). Indeed, as : = F (:p^ (X:q _Xq)), an informative prefix

for must contain at least one state after the first state in which :p holds.

We distinguish between three types of safety formulas.

– A safety formula is intentionally safe iff all the bad prefixes for are informative.

For example, the formulaGp is intentionally safe.

– A safety formula is accidentally safe iff not all the bad prefixes for are informative,

but every computation that violates has an informative bad prefix. For example, the

formulasG(q_XGp)^G(r_XG:p) andG(p_ (Xq^X:q)) are accidentally safe.

– A safety formula is pathologically safe if there is a computation that violates

and has no informative bad prefix. For example, the formula [G(q _ GFp) ^ G(r _

GF:p)]_Gq _Gr is pathologically safe.

Sistla has shown that all temporal formulas in positive normal form constructed with

the temporal connectives X and V are safety formulas [Sis94]. We call such formulas

syntactically safe. The following strengthens Sistla’s result.

Theorem 4. If is syntactically safe, then is intentionally or accidentally safe.

Given an LTL formula in positive normal form, one can build an alternating Büchi

automaton A

= h2

AP

; Q; �;Q

0

; F i such that L(A

) = k k. Essentially, each state

of L(A

) corresponds to a subformula of , and its transitions follow the semantics of

LTL [Var96]. We define the alternating Büchi automaton Atrue

= h2

AP

; Q; �;Q

0

; ;i by

redefining the set of accepting states to be the empty set. So, while in A

a copy of the

automaton may accept by either reaching a state from which it proceed to true or visiting

states of the form '

1

V '

2

infinitely often, in A

true

all copies must reach a state from

which they proceed to true. Accordingly, Atrue

accepts exactly these computations that

have a finite prefix that is informative for . To see this, note that such computations

can be accepted by a run of A

in which all the copies eventually reach a state that is

associated with propositional assertions that are satisfied. Now, let �n(Atrue

) be Atrue

when regarded as an automaton on finite words.

Theorem 5. For every safety formula , the automaton �n(Atrue
:

) accepts exactly all the

prefixes that are informative for .

Corollary 6. Consider a safety formula . If is intentionally safe, then �n(A

true

:

) is

tight for . Also, if is accidentally safe, then �n(A

true

:

) is fine for .

Theorem 7. Deciding whether a given formula is pathologicallysafe is PSPACE-complete.

Proof: Consider a formula . Recall that the automatonAtrue

accepts exactly these com-

putations that have a finite prefix that is informative for . Hence, is not pathologi-

cally safe iff every computation that does not satisfy is accepted by Atrue
:

. Accordingly,

checking whether is pathologically safe can be reduced to checking the containment of

L(A

:

) in L(Atrue
:

). Since the size of A

is linear in the length of and containment for

alternating Büchi automata can be checked in polynomial space [KV97], we are done. For

the lower bound, we do a reduction from the problem of deciding whether a given formula

is a safety formula. Consider a formula , and let p; q, and r be atomic propositions not in

 . The formula ' = [G(q _GFp)^G(r _GF:p)]_Gq _Gr is pathologically safe. It

can be shown that is a safety formula iff ^ ' is pathologically safe. ut

Note that the lower bound in Theorem 7 implies that the reverse direction of Theorem 4

does not hold.

6 A Methodology

In Section 5, we partitioned safety formulas into three safety levels and showed that for

some formulas, we can circumvent the blow-up involved in constructing a tight automa-

ton for the bad prefixes. In particular, we showed that the automaton �n(A

true

:

), which

is linear in the length of , is tight for that is intentionally safe and is fine for that

is accidentally safe. In this section we describe a methodology for efficient verification of

safety properties that is based on these observations. Consider a system M and a safety

LTL formula . Let �n(M) be a nondeterministic automaton on finite words that accepts

the prefixes of computations ofM , and let U true
:

be the nondeterministic automaton on fi-

nite words equivalent to the alternating automaton �n(A

true

:

) [CKS81]. The size of U true
:

is exponential in the size of �n(Atrue
:

), hence it is exponential in the length of . Given

M and , we suggest to proceed as follows (see the figure below).

Y

M is correct Consult user

�n(M)� U

true

:

?

= ;

M is incorrect

N

YN

Return error trace Is pathologically safe?

Instead of checking the emptiness ofM �A

:

, verification starts by checking �n(M)

with respect to U

true

:

. Since both automata refer to finite words, this can be done using

finite forward reachability analysis. If the product �n(M)� U

true

:

is not empty, we return

a word w in the intersection, namely, a bad prefix for that is generated by M3. If the

product �n(M)� U

true

:

is empty, then, as U true
:

is fine for intentionally and accidentally

safe formulas, there may be two reasons for this. One, is thatM satisfies , and the second

is that is pathologically safe. Therefore, we next check whether is pathologically safe.

(Note that for syntactically safe formulas this check is unnecessary, by Theorem 4.) If it is

not pathologically safe, we conclude thatM satisfies . Otherwise, we tell the user that his

formula is pathologically safe, indicating that his specification is needlessly complicated

(accidentally and pathologically safe formulas contain redundancy). At this point, the user

would probably be surprised that his formula was a safety formula (if he had known it is

safety, he would have simplified it to an intentionally safe formula – a feasible automatic

simplification of such formulas is an open problem). If the user wishes to continue with

this formula, we give up using the fact that is safety and proceed with usual LTL model

checking, thus we check the emptiness of M �A

:

. (Recall that the symbolic algorithm

for emptiness of Büchi automata is in the worst case quadratic [HKSV97, TBK95].) Note

that at this point, the error trace that the user gets if M does not satisfy consists of a

prefix and a cycle, yet since the user does not want to change his formula, he probably

has no idea why it is a safety formula and a finite non-informative error trace would not

3 Note that since may not be intentionally safe, the automaton U true
:

may not be tight for , thus

while w is a minimal informative bad prefix, it may not be a minimal bad prefix.

help him). If the user prefers, or if M is very large (making the discovery of bad cycles

infeasible), we can build an automaton for pref (), hoping that by learning it, the user

would understand how to simplify his formula or that, in spite of the potential blow-up in

 , finite forward reachability would work better.

Acknowledgement. The second author is grateful to Avner Landver for stimulating dis-

cussions.

References

[AS85] B. Alpern and F.B. Schneider. Defining liveness. Information processing letters,

21:181–185, 1985.

[AS87] B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed computing,

2:117–126, 1987.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model

checking: 1020 states and beyond. Information and Computation, 98(2):142–170, June

1992.

[BM83] R.S. Boyer and J.S. Moore. Proof-checking, theorem-proving and program verifica-

tion. Technical Report 35, Institute for Computing Science and Computer Applications,

University of Texas at Austin, January 1983.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons

using branching time temporal logic. In Proc. Workshop on Logic of Programs, LNCS

131, pp. 52–71, 1981.

[CES97] W. Canfield, E.A. Emerson, and A. Saha. Checking formal specifications under simu-

lation. In Proc. International Conference on Computer Design, pp. 455–460, 1997.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Associa-

tion for Computing Machinery, 28(1):114–133, January 1981.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algo-

rithms for the verification of temporal properties. Formal Methods in System Design,

1:275–288, 1992.

[Eme83] E.A. Emerson. Alternative semantics for temporal logics. Theoretical Computer Sci-

ence, 26:121–130, 1983.

[Fra92] N. Francez. Program verification. International Computer Science. Addison-Weflay,

1992.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifica-

tion of linear temporal logic. In Protocol Specification, Testing, and Verification, pp.

3–18. Chapman & Hall, August 1995.

[GW91] P. Godefroid and P. Wolper. Using partial orders for the efficient verification of dead-

lock freedom and safety properties. In Proc. 3rd CAV, LNCS 575, pp. 332–342, 1991.

[HKSV97] R.H. Hardin, R.P. Kurshan, S.K. Shukla, and M.Y. Vardi. A new heuristic for bad cycle

detection using BDDs. In Proc. 9th CAV, LNCS 1254, pp. 268–278, 1997.

[IN97] H. Iwashita and T. Nakata. Forward model checking techniques oriented to buggy de-

signs. In Proc. IEEE/ACM ICCAD, pp. 400–404, 1997.

[KV97] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. In Proc.

5th ISTCS, pp. 147–158. IEEE Computer Society Press, 1997.

[KV98] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-time

to branching-time. In Proc. 13th LICS, pp. 81–92, June 1998.

[Lam85] L. Lamport. Logical foundation. In Distributed systems - methods and tools for speci-

fication, LNCS 190, 1985.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy

their linear specification. In Proc. 12th POPL, pp. 97–107, 1985.

[LWA98] Y. Luo, T. Wongsonegoro, and A. Aziz. Hybrid techniques for fast functional simula-

tion. In Proc. 35th DAC. IEEE Computer Society, 1998.

[MAB+94] Z. Manna, A. Anuchitanukul, N. Bjorner, A. Browne, E. Chang, M. Colon, L. De Al-

faro, H. Devarajan, H. Sipma, and T. Uribe. STeP: The Stanford Temporal Prover.

Technical Report STAN-CS-TR-94-1518, Dept. of Computer Science, Stanford Uni-

versity, 1994.

[McM92] K. McMillan. Using unfolding to avoid the state explosion problem in the verification

of asynchronous circuits. In Proc. 4th CAV, LNCS 663, pp. 164–174, 1992.

[MF71] A.R. Meyer and M.J. Fischer. Economy of description by automata, grammars, and

formal systems. In Proc. 12th IEEE Symp. on Switching and Automata Theory, pp.

188–191, 1971.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, Berlin, January 1992.

[MP95] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Safety. Springer-Verlag, New York, 1995.

[MR97] S. Melzer and S. Roemer. Deadlock checking using net unfoldings. In Proc. 9th CAV,

LNCS 1254, pp. 364–375, 1997.

[MS72] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions

with squaring requires exponential time. In Proc. 13th IEEE Symp. on Switching and

Automata Theory, pp. 125–129, 1972.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar.

In Proc. 5th International Symp. on Programming, LNCS 137, pp. 337–351, 1981.

[RS95] K. Ravi and F. Somenzi. High-density reachability analysis. In Proc. CAD, pp. 154–

158, 1995.

[Saf88] S. Safra. On the complexity of !-automata. In Proc. 29th FOCS, pp. 319–327, White

Plains, 1988.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.

Journal ACM, 32:733–749, 1985.

[Sis94] A.P. Sistla. Satefy, liveness and fairness in temporal logic. Formal Aspects of Comput-

ing, 6:495–511, 1994.

[SOR93] R.E. Shankar, S. Owre, and J.M. Rushby. The PVS proof checker: A reference manual

(beta release). Technical report, Computer Science laboratory, SRI International, Menlo

Park, California, March 1993.

[TBK95] H.J. Touati, R.K. Brayton, and R. Kurshan. Testing language containment for !-

automata using BDD’s. Information and Computation, 118(1):101–109, April 1995.

[Val93] A. Valmari. On-the-fly verification with stubborn sets. In Proc. 5nd CAV, LNCS 697,

1993.

[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and

G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, LNCS 1043,

pp. 238–266, 1996.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri-

fication. In Proc. 1st LICS, pp. 322–331, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and

Computation, 115(1):1–37, November 1994.

[Wol82] P. Wolper. Synthesis of Communicating Processes from Temporal Logic Specifications.

PhD thesis, Stanford University, 1982.

[YSAA97] J. Yuan, J. Shen, J. Abraham, and A. Aziz. On combining formal and informal verifi-

cation. In Proc 9th CAV, LNCS 1254, pp. 376–387, 1997.

