Prioritized Traversal: Efficient Reachability Analysis
for Verification and Falsification

Ranan Fraer, Gila Kamhi, Barukh Ziv, Moshe Y. Vardi*%, Limor Fix

Logic and Validation Technology, Intel Corporation, Haifa, Israel
Dept. of Computer Science, Rice University*
{rananf, gkamhi, zbarukh, Ifix} @iil.intel.com, vardi @cs.rice.edu

Abstract. Our experience with semi-exhaustive verification shows a severe
degradation in usability for the corner-case bugs, where the tuning effort
becomes much higher and recovery from dead-ends is more and more difficult.
Moreover, when there are no bugs at all, shifting semi-exhaustive traversa to
exhaustive traversal is very expensive, if not impossible. This makes the output
of semi-exhaustive verification on non-buggy designs very ambiguous.
Furthermore, since after the design fixes each falsification task needs to
converge to full verification, there is a strong need for an algorithm that can
handle efficiently both verification and fasification. We address these
shortcomings with an enhanced reachability algorithm that is more robust in
detecting corner-case bugs and that can potentially converge to exhaustive
reachability. Our approach is similar to that of Cabodi et al. in partitioning the
frontiers during the traversal, but differs in two respects. First, our partitioning
algorithm trades quality for time resulting in a significantly faster traversal.
Second, the subfrontiers are processed according to some priority function
resulting in a mixed BFS/DFS traversal. It is this last feature that makes our
algorithm suitable for both falsification and verification.

1 Introduction

Functional RTL validation is addressed today by two complementary technologies.
The more traditional one, simulation, has high capacity but covers only atiny fraction
out of all the possible behaviors of the design. On the contrary, formal verification
guarantees full coverage of the entire state space but is severely limited in terms of
capacity. A number of hybrid approaches that combine the strengths of the two
validation technologies have emerged lately. One of them is semi-exhaustive
verification [1,3,4,5,9] that aims at exploring a more significant fraction of the state
space within the same memory and time limits. While maintaining high coverage,
similar to exhaustive verification, this technique is reaching more buggy states, in less
time and with smaller memory consumption. In this family we can include several
heuristics, like the high-density reachability [1], and saturated simulation [4,5].

We have run extensive experiments using the high-density reachability on a rich
set of industrial designs, and we have reported encouraging results [15]. As opposed

1 Work partially supported by NSF grant CCR-9700061 and a grant from Intel Corporation.

to previous studies, where semi-exhaustive algorithms are evaluated on the basis of

their state space coverage, our results show these algorithms to be highly effective in

bug finding too. We have identified two classes of problems where semi-exhaustive
verification is particularly beneficial:

— Dense bugs. Designs characterized by a high density of buggy states. The
exhaustive verification usually finds these bugs too, but the semi-exhaustive one
reaches the buggy states much faster.

— Corner-case bugs: Designs characterized by sparsely distributed bugs in the state
space such that the exhaustive verification blows up long before reaching them.
These bugs are now within the reach of semi-exhaustive algorithms that can go
deeper in the state space, while keeping the memory consumption under control.

Nevertheless, the corner-case bugs require a much higher tuning effort. Experience
shows that often only a specific subsetting heuristic and a particular threshold are
leading the semi-exhaustive algorithm to a buggy state, and very small variations of
this “golden” setting are bound to fail. Failure here means getting stuck in a dead-end,
where no more new states are found, and yet we are not sure if all the reachable states
have been covered. The dead-end recovery algorithm of [11] addresses this problem
by using the scrap states (the non-dense subsets, ignored by previous subsettings) to
regenerate the traversal. The scrap states are partitioned as well, similarly to [11].
However, we had little success with this algorithm, as the BDDs of the scrap
partitions gets larger and larger and more difficult to use.

For the same reason, shifting from semi-exhaustive traversal to an exhaustive one
is very expensive, and often impossible. This makes the semi-exhaustive approach
unsuitable for verification tasks (where there are no bugs at all). The ability to address
both verification and falsification problems is important in an industrial context, since
after the design fixes each falsification task needs to converge to full verification.
Moreover, a significant problem in industrial-size projects is to ensure that the process
of fixing one design problem does not introduce another. In the context of
conventional testing this is checked through regression testing [19]. If consecutive test
suites check N properties, a failure in one property may require re-testing all the
previous suites, once a fix has been made. Efficient regression testing, clearly,
requires an algorithm powerful both for verification and falsification.

To overcome the above drawbacks in the semi-exhaustive approach, we introduce
in this paper an enhanced reachability analysis that is efficient both for falsification
and verification and that is less sensitive to tuning. For falsification, we still want to
use the mixed BFS/DFS strategy that is at the core of the semi-exhaustive approach.
As for verification, we replace the dense/non-dense partitioning of [1] with a balanced
partitioning as in Cabodi et al. [13]. As noted above, the density criterion is unsuitable
for verification, due to the difficulty of exploring the non-dense part of the state
space.

So our approach follows the lines of Cabodi et al. [13], producing at each step a set
of balanced partitions instead of one dense partition, but differs in two respects. First,
our partitioning algorithm trades quality for time resulting in a significantly faster
traversal. The partitioning is based as in [13] on selecting a splitting variable. We
have witnessed that the selection of the splitting variable can be very expensive
computationally and significantly increase the overall traversal time. Therefore, we
make use of a new heuristics to select only a subset of the variables as candidates for

the splitting as opposed to [13] where al the variables are involved in the selection
process. Although the new partitioning algorithm may generate less balanced
partitions, it is faster than the original and reduces the overall traversal time.

Second, while [13] does a dtrict breadth-first search as in the classic reachability,
we make use of a mixed breadth-first /depth-first traversal controlled by a prioritized
queue of partitions. We check the correctness of the invariant properties on-the-fly
during the reachability analysis. The mixed approach, in addition to enjoying the
benefits reported by Cabodi et a. for balanced decomposition (i.e., low peak memory
requirement and drastic CPU-time and capacity improvement), makes the search more
robust in case of falsification, by getting faster to the bugs. On-the-fly verification
[16] clearly reduces the time required to get to the bugs. Experiments on Intel designs
show a marked improvement on the existing exact and partia reachability
techniques.

The paper starts with a summary of related work in Section 2. Section 3 introduces
the new prioritized traversal as well as the fast splitting algorithm. In Section 4 we
report experimental results comparing prioritized traversal to existing traversal
algorithms and the new splitting algorithm to the original one. We conclude in
Section 5 by summarizing the contributions of thiswork.

2 Reated Work

Semi-exhaustive verification addresses the concerns of practicing verifiers by
shifting the focus from verification to falsification. Rather than ensuring the absence
of bugs, it turns the verification tool into an effective bug hunter. This hybrid
approach aims at improving over both simulation and formal verification in terms of
state space coverage and capacity respectively.

Our usage of semi-exhaustive verification follows the lines of [1,3,5,9], being
based on subsetting the frontiers during state space exploration, whenever these
frontiers reach a given threshold by making use of various under-approximation
techniques.

The effectiveness of the semi-exhaustive verification is clearly very sensitive to the
nature of the algorithm employed for subsetting the frontiers. A large number of BDD
subsetting algorithms have been proposed lately in the model checking literature.
Each of them is necessarily a heuristic, attempting to optimize different criteria of the
chosen subset. An important class of heuristics takes the density of the BDDs as the
criterion to be optimized, where density is defined as the ratio of states represented by
the BDD to the size of the BDD. This relates to the observation that large BDDs are
needed for representing sparse sets of states (as it is the case for the frontiers).
Removing the isolated states can lead to significant reductions in the size of the
BDDs.

Ravi and Somenzi [1] have introduced the first algorithms for extracting dense
BDD subsets, Heavy-Branch (HB) and Short-Path (SP). Independently, Shiple
proposed in his thesis [8] the algorithm Under-Approx (UA) that also optimizes the
subset according to the density criterion. Recently, Ravi et a. [9] proposed Remap-
Under-Approx (RUA) as a combination of UA with more traditiona BDD

minimization algorithms like Constrain and Restrict [10]. A combined algorithm is
Compress (COM) [9], which applies first SP with the given threshold and then RUA
with a threshold of O to increase the density of the result. Although more expensive,
the combination of the two algorithmsis supposed to produce better results.

The Saturation (SAT) agorithm [3,5] is based on a different idea. Rather than
keeping as many states as possible, it attempts to preserve the interesting states. In the
context of [3,5] the control states are defined as the interesting ones. The heuristic
makes sure to saturate the subset with respect to the control states, i.e. that each
possible assignment to the control variables is represented exactly once in the subset.
Interms of BDDs, this is implemented by Lin and Newton’s Cproject operator [12].

Previous studies [1,3,5,9] advocate the merits of dense frontier subsetting
techniques on the basis of their coverage of the reachable state space and the density
of the approximated frontiers. We have evaluated in [15] the effectiveness of these
techniques for bug hunting and confirmed their usefulness in the fast detection of
design or specification errors. However, a major shortcoming of these techniques is
the difficulty, and in many cases the inability, to provide formal guarantees of
correctness, in case no bug is found. In other words, these techniques, although useful
for falsification, are not practical for verification. Furthermore, these techniques suffer
from high tuning effort in case they are used to find the corner-case bugs.

Our approach is closely related to the work of Cabodi et al. [13], which considers
as a key goal the good decomposition of state sets. They adopt a technique aimed at
producing balanced partitions with a possibly minimum overall BDD size. This size is
often slightly larger than the original one, but this drawback is largely overcome by
the benefits derived from partitioned storage and computations. We have observed
that the balanced partitioning approach is very effective in reducing peak memory
requirements and it can drastically decrease the overall BDD size. From our
experience, the benefits of balanced partitioning over dense subsetting is that it
requires less tuning effort and it can much more easily and efficiently converge to
exact reachability. On the other hand, the BDD splitting algorithm used in [13] may
be computationally very expensive. For average designs the time spent in BDD
splitting may outweigh the overall benefits of balanced partitioning. Cabodi et al.
make use of a partitioned breadth-first search. For falsification we have observed the
mixed breadth-first/depth-first approach to be much more effective. The enhanced
reachability analysis that we propose enjoys the benefits of balanced partitioning and
addresses its shortcomings.

Finally, the work of Narayan et al. [14] on partitioned ROBDDs takes a more
radical approach where all the BDDs in the systems (not just the frontier and the
reachable states) are subject to partitioning. Moreover, different partitions can be
reordered with different variable orders. This approach can cope better with the BDD
explosion problem, but it involves significant effort in maintaining the coherency of
the infrastructure where several BDD variable orders coexist simultaneously.

3 Improved Reachability Search

A finite state machine is an abstract model describing the behavior of a sequential
circuit. A completely specified FSM M isa5-tuple M = (1,S8,A, S,), where | is the
input alphabet, Sisthe state space, § is the transition relation contained in Sx | x S,
and S, ¢ Sistheinitial state set. BDDs are used to represent and manipulate
functions and state sets, by means of their characteristic functions. In the rest of
paper, we make no distinction between BDDs and set of states.

3.1 Invariant Verification

A common verification problem for hardware designs is to determine if every state
reachable from a designated set of initial states lies within a specified set of “good
states” (referred to as the invariant). This problem is variously known as invariant
verification, or assertion checking. Invariant verification can be performed by
computing all states reachable from the initial states and checking that they all lie in
the invariant. This reduces the invariant verification problem to the one of traversing
the state transition graph of the design, where the successors of a state are computed
according to the transition relation of the model. Moreover, traversing the state graph
in a breadth-first order makes possible to work on sets of states that are symbolically
represented as BDDs [6]. This is an instance of the general technique of symbolic
model checking [7].

Given an invariant inv and an initial set of states S,, reachability analysis starts
with the BDD for S,, and uses BDD functions to iterate up to a fixed point, which is
the set of all the states reachable from S, using the Img operator. If the set of
reachable states R is contained in inv, then the invariant is verified to be true,
otherwise the invariant is not satisfied by the model and a counter-example needs to
be generated.

The primary limitation of this classic traversal algorithm is that the BDDs
encountered at each iteration F, commonly referred as frontiers, and R, referred as
reachable states, can grow very large leading to a blow-up in memory or to a
verification time-out. Moreover, it may be impossible to perform image computation
because of the BDDs involved in the intermediate computations.

Subsetting traversal introduced by Ravi and Somenzi [1] and Partitioned traversal
proposed by Cabodi et al. [13] (Figure 1) tackle these shortcomings of the classic
traversal by decomposing state sets when they become too large to be represented as a
monolithic BDD or when image computation is too expensive.

Subsetting traversal keeps the size of the frontiers under control by computing the
image computation only on a dense subset of the frontier, each time the size of the
current frontier reaches a given threshold. When no new states are produced, the sub-
traversal may have reached the actual fixed-point (the one that would be obtained
during pure BFS traversal) or a dead-end, which arises from having discarded some
states during the process of subsetting. Theoretically, termination could be checked by
computing the image of current reached set of states (as in Figure 1). In practice, this
is rarely feasible, given the size of the BDD representing the reachable states. A dead-
end resolution algorithm was proposed in [11] that keeps the scrap states (ignored by

previous subsettings) in a partitioned form to regenerate the traversal. However, we
had little success with this algorithm, as the BDDs of the scrap partitions (the non-
dense part of the state space) get larger and larger and more difficult to use.

SUBSETTING_TRAVERSAL (8, S, th) | PARTITIONED_TRAVERSAL (6, S, th)
R=F=&; R=F=$S;
while (F = &) { while (N, # O) {
F=IMG(F)-R; Tpo={IMG(s,f) |f € Fp};
R=RUF; F, = SET_DIFF (T, Ry);
if (F=@) // checkif dead-end Ry, = SET_UNION (F,, Ry);
F=Tmg(5R) - R: Fp = RE_PARTITION(F,, th);
if (size(F) > th) R, =RE_PARTITION(R,, th);
F = subset (F); J
1

Figure 1. Subsetting traversal [1] and Partitioned Traversal [13]

Partitioned traversal is a BFS one, just like the classic algorithm, except that it
keeps the frontier F as a set of partitions F,, and the reachable states R as a set of
partitions R,. The T, sets are the results of image computation for each of the
subfrontiers F,, which may be either re-combined or partitioned again. This is done by
functions like SET DIFF, SET_UNION, and RE_PARTITION that work on
partitioned sets. The intuition behind this approach is to overcome the complexity
issue of large frontiers by splitting the frontiers to balanced partitions with minimum
overall size and decrease peak BDD size by performing the image computation on the
partitions of the frontier. One advantage of partitioned traversal over subsetting
traversal is that it can more easily converge to exhaustive reachability. During the
whole computation, all the partitions are preserved and image computation is
performed on all the partitions. The computation never gets into dead-ends and
consequently there is no need to perform image computation on the reached states. On
the other hand, a major drawback of this approach is the time spent in selecting the
BDD variable to split the frontier to balanced partitions. Moreover, if this traversal is
used for falsification purposes, since the reachable states are computed still in a BFS
fashion, it is time consuming to get to deep bugs.

Our approach is related to both [1] and [13]. As [13] it aims at generating balanced
partitions instead of dense subsets, since we have experienced that balanced
partitioning requires less tuning effort than dense subsetting and makes it easy to
converge to full verification. Similarly to [1], we make use of a mixed breadth-
first/depth-first search strategy in order to reach the deep bugs faster. Moreover, we
propose a fast splitting algorithm that reduces the overall traversal time.

Consequently, our approach enjoys the benefits of both subsetting and partitioned
traversal, while addressing the shortcomings of the two approaches: unsuitability of
subsetting traversal for full verification, inefficiency of partitioned traversal for
falsification and performance penalty induced by the splitting algorithm in partitioned
traversal.

3.2 Fast Frontier Splitting

Cabodi et al. [13] proposed a BDD splitting algorithm based on single variable
selection, that aims at producing balanced partitions with minimum overall BDD size.
The algorithm is based on a procedure estimating the size of the cofactors with
respect to a given variable. The cost of splitting a BDD with variable v is computed
making use of the estimated node counts. The cost function calculates the potential of
a variable v to generate balanced BDDs with minimum overall BDD size. The main
drawback of this approach is that the estimated node counts may be quite inaccurate,
resulting in unbalanced partitions. The estimations are computed without considering
the reductions and sub-tree sharing. Therefore, in [18] an enhanced procedure was
proposed. The enhanced algorithm takes into consideration the sharing factor while
estimating the size of the cofactors with respect to a given variable. This refinement
yields very precise estimates but is much slower than the original one.

Moreover, both algorithms estimate the size of the BDD representing f constrained
either by v or ~v for each variable v in the true support of f. The cofactor size
estimation for each variable in the support is computationally very expensive, and
therefore, is a major drawback of the partitioned reachability analysis.

Our frontier splitting algorithm aims at achieving a good time/accuracy trade-off.
We still want to use the accurate cofactor estimation of [18], but only on a subset of
the variables. Therefore, we propose a two-stage algorithm?. The first stage prioritizes
the variables according to their splitting quality. The second stage calculates accurate
cofactor size estimations as in [18] for the subset of variables chosen to be the best
candidates at the first stage. The performance improvement is mainly due to the
accurate cofactor size estimation of only a subset of the variables. Additionally, the
first stage of the algorithm, which prioritizes the variables with respect to their
splitting quality is quite fast. This first stage is comparable to the function counting
the nodes of a BDD, so its time complexity is linear in the size of the BDD.
Therefore, we get a significant performance gain that outweighs the degradation in
splitting quality, as testified by the results in Section 4.

In order to prioritize the variables with respect to their splitting quality, we
estimate the size of every sub-function f in a BDD (i.e., the size of the sub-DAG
under every BDD node), which we refer to as c[f]. Clearly, c[f] < clfy] + c[fi] + 1,
and the equality holds only when there is no sharing between f; and f;. Using a DFS
traversal of the BDD representing the function f, the exact c[f] may be calculated as
clfl = c'lfo]l + ¢’Ifi] + 1, where ¢’[fy] and c’[f;] are the number of unvisited nodes
encountered during the traversal of f; and f;, respectively. If £, is traversed first, then
c’'lfy]l = clfy] and ¢’[f;] < clfi], since there may be node sharing between f; and f;.
Similarly, ¢’[f;] = clfi] and ¢’[fo] < clfo] if f; is traversed first. Therefore, the value of
c’[fy] is different if the traversal starts from F or F;. The maximum of the two values
gives an accurate estimate for c[f;]). The same holds for c[f;].

2 We would like to thank one of the reviewers for pointing us to a more recent paper of Cabodi
et a. [17] proposing similar improvements to the splitting agorithm. However, their
estimation of cofactor sizes is based on computing different metrics during the DFS traversa
of the BDD.

Based on these facts, we make two traversals on the BDD of F, where at the first
traversal we expand the 0-edge of every node f of F, while at the second pass the 1-
edge is expanded first. At each pass, c[f] is updated such that its final value is the
maximum value resulting from the two traversals. Note that the resulting c[f] is only
an estimate of the real size of /. To measure the splitting quality of each variable v in
the support of F, we make use of the estimate sizes of sub-functions in F. We
experimented with several cost functions and we have found the following one to be
satisfying:

10 VD R
£ var (p=v AX (C[f‘] ’ CD%]) f var (f)=v C[ﬁ
card({/ | var(f) =v})

COST(v) =

where var(f) is the root variable of the sub-BDD f, so the summations in the
nominator are done over al the BDD nodes f that are at the level of the variable v.
The denominator is simply the number of al the nodes at the level of v. The first term
in the nominator represents the balance between the cofactors, and the second term is
the node sharing. The weight w of the balancing term was empirically determined to
be 0.4.

We then proceed to the second stage, where variables are prioritized in increasing
order of their COST(v), and an accurate estimation of cofactors' sizes is calculated on
the best N variables using the size estimation algorithm in [18]. The variable with the
minimum larger cofactor, that is min(max(|f,,//.,])), is chosen as the splitting variable
v. We experienced that calculating an accurate estimate to a small set of variables (for
instance, N = 15) is sufficient to get to a nearly optimal splitting.

3.3 On-the-fly Verification

We have incorporated on-the-fly verification of the invariants [16] to our reachability
algorithms. Instead of checking the invariant only after all reachable states are
computed, this check is performed after each computation of a new frontier. This
feature is critical for falsification problems, where the different algorithms are
evaluated with respect to their success in bug finding. This should be contrasted with
previous work ([1,11,13]) where the evaluation is strictly based on the number of
reached states.

3.4 Prioritized Traversal

Figure 2 shows the pseudo-code for the prioritized traversal. The set of states that
satisfy the invariant is represented by inv. Prioritized traversal can be performed with
atransition relation & in monolithic or partitioned form. The results in Section 4 are
obtained when a partitioned transition relation is used.

R represents the set of states reached so far, initialy equal to the set of initial states
S, Fqueue is the prioritized queue of the frontiers that have yet to be processed.
Initially Fqueue contains just the set S,. Aslong as the queue is not empty, we pop its
first element F, compute its image and reinsert the result into Fqueue according to the

priority function. Whenever a new frontier F is inserted into the queue, if its size
exceeds the threshold th, F is completely partitioned (i.e., decomposed until the size
of all its sub-partitions are below th) making use of the splitting algorithm explained
in Section 3.2. The new partitions are inserted in the queue in the order imposed by
the priority function. We have experimented with several priority functions
(minimum_size, density, frontier_age). Our experience, as can be observed from the
results reported in Section 4, shows that minimum _size is the most efficient and the
least sensitive priority function. At each fixed-point iteration step, the correctness of
the invariant is checked. The traversal ends if the invariant is fasified during the
reachability analysis.

PRIORITIZED_TRAVERSAL INSERT(F, Fqueue, th, prio_func)
(6,5, th, prio_func) if (size(F) >th){
R=3; Fp = COMPLETE_PARTITION(F th);
INVARIANT_CHECK(So, inv); Foreachf € F,
INSERT(So, Fqueue, th, prio_func); insert f in Fqueue using prio_func;
while (Fqueue = []) { }
F = POP (Fqueue); eseif (F= Q)
F=IMG(, F) - R; insert f in Fqueue using prio_func;
R=RUF;
INVARIANT_CHECK(F, inv); INVARIANT_CHECK(F, inv)
INSERT(F, Fqgueue, th, if (F < inv) report the bug and exit;
prio_func);
}

Figure 2. Prioritized traversal

Prioritized traversal is a mixed BFS/DFS traversal, which can be converged to full
DFS or BFS by inserting the new frontiers always to the top or the bottom of the
queue. Therefore, as a search traversal, it subsumes the partitioned traversa
introduced by Cabodi et a. [13]. Note that our approach, unlike [13], does not re-
partition the reachable states and the frontiers at each step. We estimate the re-
partitioning to be very expensive, and we avoid using a partitioned SET_DIFF (Figure
1) to detect the fixpoint.

4 Experimental results

The results reported in this section come to support our main claims about the
advantages of the new algorithms proposed in this paper. Section 4.1 compares our
fast splitting algorithm against the one in [18] by measuring the impact of the
time/quality tradeoff on the overall performance. Section 4.2 compares prioritized
traversal with classic, subsetting and partitioned traversal on a set of verification and
falsification problems. While these problems can be handled by most of the
algorithms, our data shows that prioritized traversal behaves consistently well all over
the spectrum. It is the only algorithm that is robust for both verification and
falsification. Finally, section 4.3 reports successful results of prioritized traversal on a

number of challenging testcases (both verification and falsification) that no other
algorithm can handle. This emphasizes the capacity improvement of our new
algorithm.

4.1 Comparing splitting algorithms

For the purpose of this experiment we have run prioritized traversal using two
different BDD splitting algorithms: the one implemented in [18] denoted by SPLIT
below, and our fast splitting algorithm denoted by SPLIT+. Running the two
algorithms on four full verification tasks (requiring exact reachability) allowed us to
compare the impact of the splitting algorithms on the overall traversal time. Table 1
describes the number or variables of each circuit (latches and inputs), the threshold
that triggers frontier partitioning, as well as the time (seconds) and memory (Mb) for
the complete traversal.

ckt cktl ckt2 ckt3 ckt4

vars 81 lat/101 inp 79 1at/80 inp 136 lat /73 inp | 129 lat /82 inp
thresh 50000 nodes 100000 nodes 100000 nodes 100000 nodes
Trials time mem time | mem time mem | time mem
SPLIT 327 169 368 91 3880 219 3522 190
SPLIT+ 244 169 309 98 2840 219 2359 185

Table 1. Impact of splitting algorithms on overall traversal time

While the speed of the splitting algorithm obviously affects the traversal time, so
does the accuracy of the splitting. Indeed, a poor split requires additional splitting
steps and increases the number of iterations of the traversal. In this respect, the speed
of SPLIT+ compensates its occasional loss in accuracy, causing it to perform
systematically better than SPLIT.

Even more convincing is to compare the two agorithms on a few specific
partitioning problems. In Table 2 we pick three representative cases and report the
sizes of the initial BDD and of the two partitions resulting from the split, as well as
the time required by the split. SPLIT+ is consistently 8-10X faster than SPLIT,
without a significant loss in accuracy, although occasionaly it can produce a poor
decomposition (as seen in the first line of Table 2).

SPLIT SPLIT+
Initial BDD | Partitions (BDD nodes) | Time | Partitions (BDD nodes) | Time
331520 224731 /215579 98.83 63834 /268414 8.86
100096 52527/ 52435 31.13 54293 / 47042 4.86
105003 53321/53312 27.96 53321/53312 2.81

Table 2. Comparing splitting algorithm on specific partitioning problems

4.2 Robustnessfor both verification and falsification

In this section, we selected for the purpose of evaluation several rea-life verification
and fasfication problems that can be handled by all the agorithms. classic
reachability (CLS), subsetting traversal using the Shortest Paths heuristic (SUB),
partitioned traversal (PART) and prioritized traversal (PRIO). The point that we want
to make here is that PRIO behaves consistently well all over the spectrum. It is the
only algorithm that is efficient and robust for both verification and falsification. As
opposed to [13], our implementation of PART does not re-partition the frontiers and
reachable states.

As for PRIO, the priority queue is sorted by BDD size (the smallest frontiers are
traversed first). This setting was uniformly a good choice, but different priority
functions perform better on different examples, which justifies the need for a general
priority queue mechanism. Also, the results obtained with the different priority
functions, and for each of them several thresholds have been consistently good, which
supports our claim about the robustness of this approach. The results for other priority
functions are not included here, due to space constraints.

ckt cktl ckt2 ckt3 ckt4

vars 81 lat/101 inp 79 1at/80 inp 136 lat /73 inp 129 lat /82 inp
thresh 50000 nodes 100000 nodes 100000 nodes 100000 nodes
time mem time mem time mem time mem

CLS 174 169 253 92 2923 265 2271 224
SUB 2763 245 568 108 Out Out Out Out
PART 299 169 457 95 3844 219 2550 190
PRIO 244 169 309 98 2840 219 2359 185

Table 3. Performance comparison on verification problems

Let uslook first at the verification resultsin Table 3 (ckt 1-4). We notice that CLS
is still the fastest algorithm. However, PRIO comes close behind — for larger
examples, it is only 10-20% slower and occasionally it beats the classic algorithm (as
seen for ckt3). Also, PRIO has lower memory consumption and this trend gets more
emphasized as we lower the threshold or run more challenging examples. This is
similar to the time/memory trade-off observed in the usage of partitioned transition
relations [20] compared to monolithic ones.

PART takes more time to complete these examples, we suspect that PRIO wins
over PART due to its mixed BFS/DFS nature that allows to reach deeper states faster
and converge in less iterations. As for SUB, its dead-end resolution algorithm rarely
succeeds to converge to full reachability and when it does is much slower than both
PRIO and PART. This is due to the unbalanced partitioning used in SUB — the dense
partition is explored first, but when it comes to traversing the non-dense one we are
dealing with increasingly larger BDDs and a rapid degradation in performance.

Table 4 reports falsification results on three buggy test cases (ckts 5-7). The time
and memory data are measured only until the bug is encountered, due to the use of
“on-the-fly” verification. As opposed to previous evaluations [1,13] of subsetting
traversal that aimed at high state coverage, our evaluation criteria measures the
efficiency and robustness of the different algorithms with respect to bug finding.

ckt ckt5 ckt6 ckt7
vars 195 1at/67 inp 129 lat/54 inp 136 lat /73 inp
thresh 50000 nodes 50000 nodes 100000 nodes
time mem time mem time mem
CLS 944 234 1307 344 4655 494
SUB Out Out 810 220 Out Out
PART 1262 155 1012 227 5650 210
PRIO 470 128 540 157 1600 210

Table 4. Performance comparison on falsification problems

PRIO is clearly faster than both CLS and PART, again due to its mixed BFS/DFS
nature. It is no surprise that PART is even slower than CLS, since both do a BFS
traversal only that PART does it dower and with lower memory consumption (just as
noticed in Table 3). When comparing performance, there is no a priori winner
between PRIO and SUB, but PRIO is definitely more robust. When SUB’s
approximations miss the closest bugs, it is harder and harder to recover from dead-
ends and to encounter the buggy states ignored previously. This is why SUB requires
a high tuning effort — often only the combination of a specific subsetting heuristic and
a specific threshold succeeds in finding the bug. By contrast, the usage of balanced
partitioning in PRIO allows it to explore more states and eventually hit the bug.
Different priority queues or different thresholds have a smaller impact on the chances
of finding the bug, although they may affect the time required for it.

4.3 Capacity improvement

One of the main benefits of PRIO is the capacity improvement over CLS, SUB and
PART. This can be noted in Table 5 for both verification (ckt 8-10) and falsification
problems (ckt 11-12). Both SUB and PART were run with the best tuning (i.e.
different thresholds, approximation heuristics) and SUB actually succeeded to handle
the two falsification problems, but only with a very specific configuration: the RUA
approximation [9] and a threshold of 400000 nodes.

Verification Falsification

ckt ckt8 ckt9 cktl0 cktll cktl2
vars | 90 lat/104 inp 145 lat/55 inp 1391at/41inp | 129 1at /82 inp | 71 lat/58 inp
thresh | 50000 nodes 50000 nodes 20000 nodes 100000 nodes 50000 nodes

time mem time time | time mem | time mem | time mem
CLS Out Out Out Out Out Out Out Out Out Out
SUB Out Out Out Out Out Out | 2236* 41 | 2763* 59
PART Out Out QOut QOut Out Out Out Out Out Out
PRIO 14768 851 | 54324 237 | 86522 228 512 48 739 63

Table 5. Capacity comparison on verification and falsification problems

These results only confirm the trend noticed in section 4.2. While CLS had a slight
edge for average verification problems, for the difficult examples PRIO has better
chances for success than both SUB and PART. All the arguments mentioned above
still apply here: PRIO wins against SUB due to the balanced partitioning, and is better
than PART due to its mixed BFS/DFS strategy.

5 Conclusions

The ability of the same algorithm to address both verification and falsification
problems is critical in an industrial context. The prioritized traversal proposed here
achieves this goal by combining the best features of subsetting traversal [1] and
partitioned traversal [13]. Asin [1], the mixed BFS/DFS strategy makes the algorithm
efficient for falsification problems. Asin [13], using balancing instead of density as
the partitioning criterion makes partitioned traversal suitable for verification
problems. The results reported on Intel designs show a marked improvement on
existing exact and partial traversal techniques.

Another important contribution of this paper is the fast splitting algorithm. As it
addresses the general BDD decomposition problem, we suspect that such an
algorithm might be useful for many other applications relying on BDD technology. In
the specific context of partitioned traversal the speed of the algorithm outweighs the
loss in the quality of the partitions, resulting in a significant reduction of the overall
traversal time.

Also it is worthwhile to note that the usage of prioritized traversal is not limited to
reachability analysis and invariant checking. It can be easily adapted to other |east-
fixpoint computations, like the evaluation of CTL formulas of type EU or EF. Since
the evaluation of such formulas involves a backward traversal of the state space, one
only has to replace the image operator with the pre-image one in order to get the
corresponding dual algorithm.

6 References

[1] K.Ravi, F. Somenzi, “High Density Reachability Analysis”, in Proceedings of ICCAD’95

[2] M.Ganai, A Aziz, “Efficient Coverage Directed State Space Search”, in Proceedings of
IWLS’98

[3] J. Yuan, J.Shen, J.Abraham, and A.Aziz, “On Combining Formal and Informal
Verification”, in Proceedings of CAV’97

[4] C.Yang, D.Dill, “Validation with Guided Search of the State Space”, In Proceedings of
DAC’98

[51 A.Aziz, J.Kukula, T. Shiple, “Hybrid Verification Using Saturated Simulation”, In
Proceedings of DAC’98

[6] R.Bryant, “Graph-based Algorithms for Boolean Function Manipulations”, IEEE
Transactions on Computers,C-35:677-691, August 1986.

[7]1 K.L. McMillan. “Symbolic Model Checking”, Kluwer 1993.

[8] T.R. Shiple “Formal Analysis of Synchronous Circuits”. PhD thesis, University of
California at Berkeley, 1996.

[9] K. Ravi, K.L. McMillan, T.R. Shiple, F. Somenzi “Approximation and Decomposition of
Binary Decision Diagrams”, in Proceedings of DAC’98.

[10] O. Coudert, J. Madre “A Unified Framework for the Formal Verification of Sequential
Circuits”, in Proceedings of ICCAD’90.

[11] K.Ravi, F. Somenzi, “Efficient Fixpoint Computation for Invariant Checking”, In
Proceedings of ICCD’99, pp. 467-474.

[12] B. Lin, R. Newton “Implicit Manipulation of Equivalence Classes Using Binary Decision
Diagrams” in Proceedings of ICCD’91.

[13] G.Cabodi, P.Camurati, S.Quer. “Improved Reachability Analysis of Large Finite State
Machines” in Proceedings of ICCAD’96.

[14] A.Narayan, J.Jain, M.Fujita, A.Sangiovanni-Vincentelli. “Partitioned ROBDDs — A
Compact, Canonical and Efficiently Manipulable Representation for Boolean Functions” in
Proceedings of ICCAD’96.

[15] R.Fraer, G.Kamhi, L.Fix, M.Vardi. “Evaluating Semi-Exhaustive Verification Techniques
for Bug Hunting” in Proceedings of SMC’99.

[16] L.Beer, S. Ben-David, A.Landver. “On-the-Fly Model Checking” of RCTL Formulas”, in
Proceedings of CAV’98.

[17] G. Cabodi, P. Camurati, S. Quer, "Improving the Efficiency of BDD-Based Operators by
Means of Partitioning," IEEE Transactions on CAD, pp. 545-556, May 1999.

[18] F.Somenzi, “ CUDD : CU Decision Diagram Package — Release 2.3.0”, Technical Report,
Dept. Electrical and Computer Engineering, University of Colorado, Boulder

[19] R. H. Hardin, R. P. Kurshan, K. L. McMillan, J. A. Reeds and N. J. A. Sloane, “Efficient
Regression Verification”, Int'l Workshop on Discrete Event Systems (WODES '96), 19-21
August , Edinburgh, IEE, London, 1996, pp. 147-150.

[20] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, D. L. Dill, “Symbolic Model
Checking for Sequential Circuit Verification”, IEEE Transactions on Computer-Aided
Designs of Integrated Circuits and Systems, 401-424 Vol.13, No. 4, April 1994.

