
Prioritized Traversal: Efficient Reachability Analysis
for Verification and Falsification

Ranan Fraer, Gila Kamhi, Barukh Ziv, Moshe Y. Vardi*1, Limor Fix

Logic and Validation Technology, Intel Corporation, Haifa, Israel
Dept. of Computer Science, Rice University*

{rananf, gkamhi, zbarukh, lfix}@iil.intel.com, vardi@cs.rice.edu

Abstract. Our experience with semi-exhaustive verification shows a severe
degradation in usability for the corner-case bugs, where the tuning effort
becomes much higher and recovery from dead-ends is more and more difficult.
Moreover, when there are no bugs at all, shifting semi-exhaustive traversal to
exhaustive traversal is very expensive, if not impossible. This makes the output
of semi-exhaustive verification on non-buggy designs very ambiguous.
Furthermore, since after the design fixes each falsification task needs to
converge to full verification, there is a strong need for an algorithm that can
handle efficiently both verification and falsification. We address these
shortcomings with an enhanced reachability algorithm that is more robust in
detecting corner-case bugs and that can potentially converge to exhaustive
reachability. Our approach is similar to that of Cabodi et al. in partitioning the
frontiers during the traversal, but differs in two respects. First, our partitioning
algorithm trades quality for time resulting in a significantly faster traversal.
Second, the subfrontiers are processed according to some priority function
resulting in a mixed BFS/DFS traversal. It is this last feature that makes our
algorithm suitable for both falsification and verification.

1 Introduction

Functional RTL validation is addressed today by two complementary technologies.
The more traditional one, simulation, has high capacity but covers only a tiny fraction
out of all the possible behaviors of the design. On the contrary, formal verification
guarantees full coverage of the entire state space but is severely limited in terms of
capacity. A number of hybrid approaches that combine the strengths of the two
validation technologies have emerged lately. One of them is semi-exhaustive
verification [1,3,4,5,9] that aims at exploring a more significant fraction of the state
space within the same memory and time limits. While maintaining high coverage,
similar to exhaustive verification, this technique is reaching more buggy states, in less
time and with smaller memory consumption. In this family we can include several
heuristics, like the high-density reachability [1], and saturated simulation [4,5].

We have run extensive experiments using the high-density reachability on a rich
set of industrial designs, and we have reported encouraging results [15]. As opposed

1 Work partially supported by NSF grant CCR-9700061 and a grant from Intel Corporation.

to previous studies, where semi-exhaustive algorithms are evaluated on the basis of
their state space coverage, our results show these algorithms to be highly effective in
bug finding too. We have identified two classes of problems where semi-exhaustive
verification is particularly beneficial:

Dense bugs: Designs characterized by a high density of buggy states. The
exhaustive verification usually finds these bugs too, but the semi-exhaustive one
reaches the buggy states much faster.
Corner-case bugs: Designs characterized by sparsely distributed bugs in the state
space such that the exhaustive verification blows up long before reaching them.
These bugs are now within the reach of semi-exhaustive algorithms that can go
deeper in the state space, while keeping the memory consumption under control.

Nevertheless, the corner-case bugs require a much higher tuning effort. Experience
shows that often only a specific subsetting heuristic and a particular threshold are
leading the semi-exhaustive algorithm to a buggy state, and very small variations of

dead-end

scrap

N

the splitting as opposed to [13] where all the variables are involved in the selection
process. Although the new partitioning algorithm may generate less balanced
partitions, it is faster than the original and reduces the overall traversal time.

Second, while [13] does a strict breadth-first search as in the classic reachability,
we make use of a mixed breadth-first /depth-first traversal controlled by a prioritized
queue of partitions. We check the correctness of the invariant properties on-the-fly
during the reachability analysis. The mixed approach, in addition to enjoying the
benefits reported by Cabodi et al. for balanced decomposition (i.e., low peak memory
requirement and drastic CPU-time and capacity improvement), makes the search more
robust in case of falsification, by getting faster to the bugs. On-the-fly verification
[16] clearly reduces the time required to get to the bugs. Experiments on Intel designs
show a marked improvement on the existing exact and partial reachability
techniques.

The paper starts with a summary of related work in Section 2. Section 3 introduces
the new prioritized traversal as well as the fast splitting algorithm. In Section 4 we
report experimental results comparing prioritized traversal to existing traversal
algorithms and the new splitting algorithm to the original one. We conclude in
Section 5 by summarizing the contributions of this work.

2 Related Work

Semi-exhaustive verification addresses the concerns of practicing verifiers by
shifting the focus from verification to falsification. Rather than ensuring the absence
of bugs, it turns the verification tool into an effective bug hunter. This hybrid
approach aims at improving over both simulation and formal verification in terms of
state space coverage and capacity respectively.

Our usage of semi-exhaustive verification follows the lines of [1,3,5,9], being
based on subsetting the frontiers during state space exploration, whenever these
frontiers reach a given threshold by making use of various under-approximation
techniques.

The effectiveness of the semi-exhaustive verification is clearly very sensitive to the
nature of the algorithm employed for subsetting the frontiers. A large number of BDD
subsetting algorithms have been proposed lately in the model checking literature.
Each of them is necessarily a heuristic, attempting to optimize different criteria of the
chosen subset. An important class of heuristics takes the density of the BDDs as the
criterion to be optimized, where density is defined as the ratio of states represented by
the BDD to the size of the BDD. This relates to the observation that large BDDs are
needed for representing sparse sets of states (as it is the case for the frontiers).
Removing the isolated states can lead to significant reductions in the size of the
BDDs.

Ravi and Somenzi [1] have introduced the first algorithms for extracting dense
BDD subsets, Heavy-Branch (HB) and Short-Path (SP). Independently, Shiple
proposed in his thesis [8] the algorithm Under-Approx (UA) that also optimizes the
subset according to the density criterion. Recently, Ravi et al. [9] proposed Remap-
Under-Approx (RUA) as a combination of UA with more traditional BDD

minimization algorithms like Constrain and Restrict [10]. A combined algorithm is
Compress (COM) [9], which applies first SP with the given threshold and then RUA
with a threshold of 0 to increase the density of the result. Although more expensive,
the combination of the two algorithms is supposed to produce better results.

The Saturation (SAT) algorithm [3,5] is based on a different idea. Rather than
keeping as many states as possible, it attempts to preserve the interesting states. In the
context of [3,5] the control states are defined as the interesting ones. The heuristic
makes sure to saturate the subset with respect to the control states, i.e. that each
possible assignment to the control variables is represented exactly once in the subset.
In terms of BDDs, Cproject

falsification, verification

3 Improved Reachability Search

A finite state machine is an abstract model describing the behavior of a sequential
circuit. A completely specified FSM M is a 5-tuple M = (I,S, , , So), where I is the
input alphabet, S is the state space, is the transition relation contained in S x I x S,
and So S is the initial state set. BDDs are used to represent and manipulate
functions and state sets, by means of their characteristic functions. In the rest of
paper, we make no distinction between BDDs and set of states.

3.1 Invariant Verification

A common verification problem for hardware designs is to determine if every state

invariant invariant
verification assertion checking

symbolic
model checking

inv o reachability analysis
o

o Img
inv

frontiers
reachable states

Subsetting traversal Partitioned traversal

Subsetting traversal

dead-end

scrap

previous subsettings) in a partitioned form to regenerate the traversal. However, we
had little success with this algorithm, as the BDDs of the scrap partitions (the non-
dense part of the state space) get larger and larger and more difficult to use.

SUBSETTING_TRAVERSAL (, So, th)
R = F = So;
while (F) {
F = IMG(, F) R
R R F

F check if dead-end
F , R R

F th
F F

(, So, th)
Rp Fp So

Np

Tp (, f) | f Fp};
Fp = SET_DIFF (Tp, Rp);
Rp = SET_UNION (Fp, Rp);
Fp = RE_PARTITION(Fp, th);
Rp = RE_PARTITION(Rp, th);

Figure 1.

Partitioned traversal
Fp

Rp Tp

Fp

3.2 Fast Frontier Splitting

Cabodi et al. [13] proposed a BDD splitting algorithm based on single variable
selection, that aims at producing

2 We would like to thank one of the reviewers for pointing us to a more recent paper of Cabodi

et al. [17] proposing similar improvements to the splitting algorithm. However, their
estimation of cofactor sizes is based on computing different metrics during the DFS traversal
of the BDD.

where var(f) is the root variable of the sub-BDD f, so the summations in the
nominator are done over all the BDD nodes f that are at the level of the variable v.
The denominator is simply the number of all the nodes at the level of v. The first term
in the nominator represents the balance between the cofactors, and the second term is
the node sharing. The weight w of the balancing term was empirically determined to
be 0.4.

We have incorporated on-the-fly verification of the invariants [16] to our reachability
algorithms. Instead of checking the invariant only after all reachable states are
computed, this check is performed after each computation of a new frontier. This
feature is critical for falsification problems, where the different algorithms are
evaluated with respect to their success in bug finding. This should be contrasted with
previous work ([1,11,13]) where the evaluation is strictly based on the number of
reached states.

Figure 2 shows the pseudo-code for the prioritized traversal. The set of states that
satisfy the invariant is represented by inv. Prioritized traversal can be performed with
a transition relation in monolithic or partitioned form. The results in Section 4 are
obtained when a partitioned transition relation is used.

R represents the set of states reached so far, initially equal to the set of initial states
So. Fqueue is the prioritized queue of the frontiers that have yet to be processed.
Initially Fqueue contains just the set So. As long as the queue is not empty, we pop its
first element F, compute its image and reinsert the result into Fqueue according to the

priority function. Whenever a new frontier F is inserted into the queue, if its size
exceeds the threshold th, F is completely partitioned (i.e., decomposed until the size
of all its sub-partitions are below th) making use of the splitting algorithm explained
in Section 3.2. The new partitions are inserted in the queue in the order imposed by
the priority function. We have experimented with several priority functions
(minimum_size, density, frontier_age). Our experience, as can be observed from the
results reported in Section 4, shows that minimum_size is the most efficient and the
least sensitive priority function. At each fixed-point iteration step, the correctness of
the invariant is checked. The traversal ends if the invariant is falsified during the
reachability analysis.

PRIORITIZED_TRAVERSAL
(,So, th, prio_func)
R = So;
INVARIANT_CHECK(So, inv);
INSERT(So, Fqueue, th, prio_func);
while (Fqueue []) {
F = POP (Fqueue);
F = IMG(, F) - R;
R = R F;
 INVARIANT_CHECK(F, inv);
 INSERT(F, Fqueue, th,
prio_func);

}

INSERT(F, Fqueue, th, prio_func)
 if (size(F) > th) {
 Fp = COMPLETE_PARTITION(F th);
 Foreach f Fp

 insert f in Fqueue using prio_func;
}
else if (F)
 insert f in Fqueue using prio_func;

INVARIANT_CHECK(F, inv)
 if (F inv) report the bug and exit;

Figure 2. Prioritized traversal

Prioritized traversal is a mixed BFS/DFS traversal, which can be converged to full
DFS or BFS by inserting the new frontiers always to the top or the bottom of the
queue. Therefore, as a search traversal, it subsumes the partitioned traversal
introduced by Cabodi et al. [13]. Note that our approach, unlike [13], does not re-
partition the reachable states and the frontiers at each step. We estimate the re-
partitioning to be very expensive, and we avoid using a partitioned SET_DIFF (Figure
1) to detect the fixpoint.

4 Experimental results

The results reported in this section come to support our main claims about the
advantages of the new algorithms proposed in this paper. Section 4.1 compares our
fast splitting algorithm against the one in [18] by measuring the impact of the
time/quality tradeoff on the overall performance. Section 4.2 compares prioritized
traversal with classic, subsetting and partitioned traversal on a set of verification and
falsification problems. While these problems can be handled by most of the
algorithms, our data shows that prioritized traversal behaves consistently well all over
the spectrum. It is the only algorithm that is robust for both verification and
falsification. Finally, section 4.3 reports successful results of prioritized traversal on a

number of challenging testcases (both verification and falsification) that no other
algorithm can handle. This emphasizes the capacity improvement of our new
algorithm.

4.1 Comparing splitting algorithms

For the purpose of this experiment we have run prioritized traversal using two
different BDD splitting algorithms: the one implemented in [18] denoted by SPLIT
below, and our fast splitting algorithm denoted by SPLIT+. Running the two
algorithms on four full verification tasks (requiring exact reachability) allowed us to
compare the impact of the splitting algorithms on the overall traversal time. Table 1
describes the number or variables of each circuit (latches and inputs), the threshold
that triggers frontier partitioning, as well as the time (seconds) and memory (Mb) for
the complete traversal.

Table 1. Impact of splitting algorithms on overall traversal time

 While the speed of the splitting algorithm obviously affects the traversal time, so
does the accuracy of the splitting. Indeed, a poor split requires additional splitting
steps and increases the number of iterations of the traversal. In this respect, the speed
of SPLIT+ compensates its occasional loss in accuracy, causing it to perform
systematically better than SPLIT.
 Even more convincing is to compare the two algorithms on a few specific
partitioning problems. In Table 2 we pick three representative cases and report the
sizes of the initial BDD and of the two partitions resulting from the split, as well as
the time required by the split. SPLIT+ is consistently 8-10X faster than SPLIT,
without a significant loss in accuracy, although occasionally it can produce a poor
decomposition (as seen in the first line of Table 2).

Table 2. Comparing splitting algorithm on specific partitioning problems

4.2 Robustness for both verification and falsification

In this section, we selected for the purpose of evaluation several real-life verification
and falsification problems that can be handled by all the algorithms: classic
reachability (CLS), subsetting traversal using the Shortest Paths heuristic (SUB),
partitioned traversal (PART) and prioritized traversal (PRIO). The point that we want
to make here is that PRIO behaves consistently well all over the spectrum. It is the
only algorithm that is efficient and robust for both verification and falsification. As
opposed to [13], our implementation of PART does not re-partition the frontiers and
reachable states.

As for PRIO, the priority queue is sorted by BDD size (the smallest frontiers are
traversed first). This setting was uniformly a good choice, but different priority
functions perform better on different examples, which justifies the need for a general
priority queue mechanism. Also, the results obtained with the different priority
functions, and for each of them several thresholds have been consistently good, which
supports our claim about the robustness of this approach. The results for other priority
functions are not included here, due to space constraints.

Table 3. Performance comparison on verification problems

Let us look first at the verification results in Table 3 (

Table 4. Performance comparison on falsification problems

PRIO is clearly faster than both CLS and PART, again due to its mixed BFS/DFS
nature. It is no surprise that PART is even slower than CLS, since both do a BFS
traversal only that PART does it slower and with lower memory consumption (just as
noticed in Table 3). When comparing performance, there is no a priori winner
between PRIO and SUB, but PRIO is definitely more robust. When

4.3 Capacity improvement

Table 5.

5 Conclusions

The ability of the same algorithm to address both verification and falsification
problems is critical in an industrial context. The prioritized traversal proposed here
achieves this goal by combining the best features of subsetting traversal [1] and
partitioned traversal [13]. As in [1], the mixed BFS/DFS strategy makes the algorithm
efficient for falsification problems. As in [13], using balancing instead of density as
the partitioning criterion makes partitioned traversal suitable for verification
problems. The results reported on Intel designs show a marked improvement on
existing exact and partial traversal techniques.
 Another important contribution of this paper is the fast splitting algorithm. As it
addresses the general BDD decomposition problem, we suspect that such an
algorithm might be useful for many other applications relying on BDD technology. In
the specific context of partitioned traversal the speed of the algorithm outweighs the
loss in the quality of the partitions, resulting in a significant reduction of the overall
traversal time.

Also it is worthwhile to note that the usage of prioritized traversal is not limited to
reachability analysis and invariant checking. It can be easily adapted to other least-
fixpoint computations, like the evaluation of CTL formulas of type EU or EF. Since
the evaluation of such formulas involves a backward traversal of the state space, one
only has to replace the image operator with the pre-image one in order to get the
corresponding dual algorithm.

6 References

[1] K.Ravi, F.

[13] G.Cabodi, P.Camurati,

