Optimization Problems for Recursive Database Queries

Moshe Y. Vardi

Computer Science

RELATIONAL MODEL

Relational model (Codd, 1970): Data organized in tables

CUSTOMERS	NAME	ADDRESS	BALANCE
	50		All and an analysis of the second
		and the second	

DATABASE QUERY LANGUAGES

SQL:

SELECT NAME
FROM CUSTOMERS
WHERE BALANCE < 0

- SQL is first-order.
- Codd, 1970: 1st-order languages are expressive enough.
- Aho and Ullman, 1978: 1st-order languages are most expressive enough.

TRANSITIVE CLOSURE

COLUMN TO SE	FLIGHTS:	ORIGIN	DESTINATION	

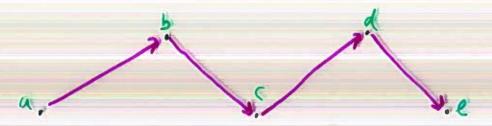
Query TC:

SELECT ORIGIN, DESTINATION

FROM FLIGHTS

WHERE there is a route from ORIGIN

to DESTINATION



Aho+Ullman: TC is not expressible in SQL.

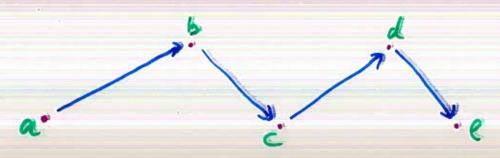
RECURSION

 $Route(X, Y) \leftarrow Flights(X, Y)$

 $Route(X, Y) \leftarrow Flights(X, Z), Route(Z, Y)$

Flights - base

Route - derived



Flights (a, b), Flights (b, c), Flights (c,d)...

Route (a, b), Route (b, c), Route (c,d)...

Route (a,c), Route (b,d)...

Route (a,d) 5...

COMPUTATIONAL COMPLEXITY

- Expressiveness costs money: recursive query are harder to evaluate.
 - 1st-order queries: speed-up by parallel processing.
 - * Recursive queries: No speed-up.
- Remedy: Automated optimization.

COMPUTER SCIENCE THEMES

- Trade-off between expressiveness and computational complexity.
- What can be automated?

OPTIMIZATION

Buys(X, Y) \leftarrow Cheap(Y), Likes(X, Y)

 $Buys(X,Y) \leftarrow Cheap(Y), Knows(X,Z), Buys(Z,Y)$

Cheap (Ye) is redundant.

 $Buys(X, Y) \leftarrow Cheap(Y), Likes(X, Y)$

 $Buys(X, Y) \leftarrow Rich(X), Knows(X, Z), Buys(Z, Y)$

Rich(X) is not redundant.

THE SHOPPERS

The Trendy Shopper:

Blurys(X, Y) \leftarrow Likes(X, Y)

 $Bluys(X, Y) \leftarrow Tremdy(X), Buys(Z, Y)$

The Impressionable Shopper:

 $Buys(X, Y) \leftarrow Likes(X, Y)$

 $Buys(X,Y) \leftarrow Knows(X,Z), Buys(Z,Y)$

BOUNDEDNESS

The Trendy shopper:

Buys(X, Y) \leftarrow Likes(X, Y)

 $Buys(X, Y) \leftarrow Trendy(X), Buys(Z, Y)$

Program is bounded: 2 iterations suffices.

Equivalently:

 $Buys(X, Y) \leftarrow Likes(X, Y)$

 $Buys(X, Y) \leftarrow Trendy(X), Likes(Z, Y)$

Boundedness = Eliminable recursion.

UNSOLVABILITY

Theorem: The boundedness problem is unsolvable. That is, there is no program that will always identify bounded queries!

Proof

- 1. Reduction: an automated way of using a program for a problem B to solve a problem A.
- 2. If A is unsolvable and A is **reducible** to B, then B is unsolvable.
- 3. The halting problem is unsolvable.
- 4. The halting problem is reducible to boundedness.

UNARY QUERIES

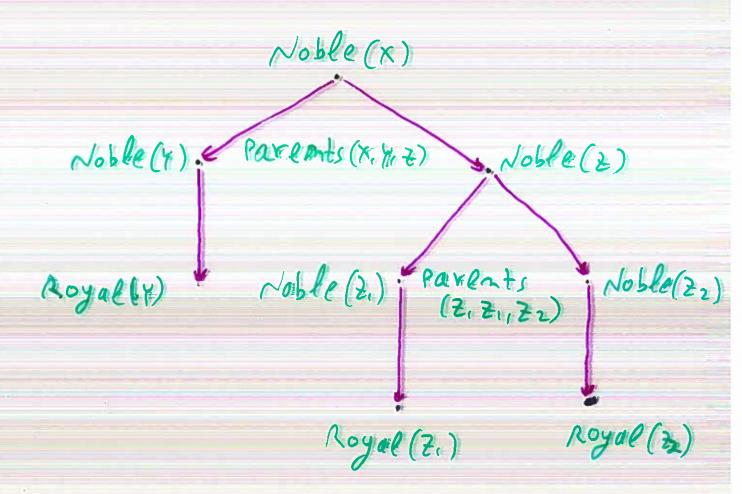
 $Noble(X) \leftarrow Royal(X)$

 $Noble(X) \leftarrow Noble(Y), Noble(Z), Parents(X, Y, Z)$

Royal, Parents - base
Noble - derived

Theorem: The boundedness problem for unary queries is solvable.

PROOF TREES



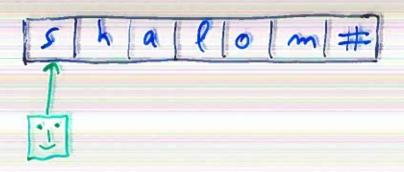
FORMAL LANAGUAGE THEORY

- Alphabet a finite set of symbols.
- Word a finite sequence of symbols from the alphabet.
- Language a collection of words over the alphabet.

WORD AUTOMATA

Automaton: $A = (\Sigma, S, I, F, \rho)$

- Σ: alphabet
- S: fimite set of states
- /: initial states
- F: accepting states
- ρ: transition relation collection of triples (s, a, t), meaning that A can make a transition from s to t upon reading a.

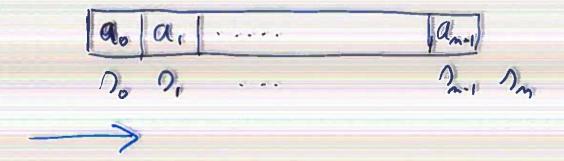


APPLYING AUTOMATA

- Word w: a0, ..., an-1
- Rum It: s_0, \ldots, s_n

$$s_0$$
 in I , (s_i, a_i, s_{i+1}) in ρ

- Acceptance: Sm in F.
- L(A) the set of words accepted by A.

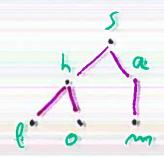


FINITENESS PROBLEM FOR AUTOMATA

- Finiteness Problem: Given an automaton A, determine if L(A) is finite or not.
- Rabin + Scott, 1959: The finiteness problem is solvable.

TREE LANAGUAGE THEORY

- Alphabet a finite set of symbols.
- Tree -



- Tree Language a collection of trees over the alphabet.
- Tree automata T(A): the set of trees accepted by A.
- The finiteness problem for tree automata is solvable.

UNARY BOUNDEDNESS

Reduction: From a unary query P we can construct a tree automaton A_P such that P is bounded iff A_P accepts only finitely many trees.

Corollary. Boundedness for unany queries is solvable.

CONCLUDING REMARKS

- Disappointment: General optimization of recursive queries is very difficult.
- Hope: Some optimization of recursive queries is possible.

Such is life in computer science!!!