
Logi
 for Computer S
ien
e: The Engineering

Challenge

�

Wolfgang Thomas

RWTH Aa
hen, Lehrstuhl f�ur Informatik VII,

52056 Aa
hen, Germany

thomas�informatik.rwth-aa
hen.de

Abstra
t. This essay is a re
e
tion on the roles whi
h logi
 played and


an play in 
omputer s
ien
e. We re
all the obvious merits of mathemat-

i
al logi
 as a parent dis
ipline of 
omputer s
ien
e, from whi
h many

�elds in theoreti
al 
omputer s
ien
e emerged, but then address some

unresolved issues in 
onne
tion with the engineering tasks of 
omputer

s
ien
e. We argue that logi
 has good perspe
tives here, following a tra-

dition whi
h is 
loser to Leibniz than to Hilbert and G�odel.

1 Introdu
tion

Logi
 is a 
ornerstone of s
ienti�
 methodology and thus belongs to the founda-

tion of every s
ienti�
 dis
ipline. For 
omputer s
ien
e, logi
 plays a still more


entral role:

{ Logi
 is a parent dis
ipline of 
omputer s
ien
e; histori
ally 
omputer s
ien
e

emerged from problems and methods whi
h were developed in mathemati
al

logi
.

{ Logi
 is a basi
 
onstituent of the 
omputer s
ien
e 
urri
ulum; in fa
t,

there is agreement that it is required in a stri
ter sense in 
omputer s
ien
e

edu
ation than, for example, in mathemati
s.

{ Logi
 has produ
ed a large reservoir of methods and theories for 
omputer

s
ien
e (whi
h are often typi
al for this appli
ation area and no more to be


ounted to mathemati
al logi
 itself).

The present paper starts with an elaboration on these aspe
ts.

But beyond these merits and 
ontributions of \logi
 in 
omputer s
ien
e",

there is also a deeper (and I think more problemati
) level of the relation between

logi
 and its 
omputer s
ien
e 
ontext. In the never-ending dis
ussion of the role

of \theory" in 
omputer s
ien
e, and why (for instan
e) logi
 should 
ontinue

to be taught in the way it is, I �nd impli
it 
riti
isms and 
hallenges whi
h are

?

Trans
ription of a le
ture given at the Dagstuhl Anniversary Conferen
e, Saar-

br�u
ken, August 2000, to appear in the pro
eedings volume Springer LNCS 2000

(Ed. R. Wilhelm)



rarely made expli
it. Mu
h of this dis
ussion is due to the di�erent viewpoints

whi
h s
ientists and engineers have. For 
lassi
al mathemati
s (espe
ially, for

analysis), it is generally a

epted that engineers have a legitimate spe
ial view

and use of the subje
t. For the 
on
epts and te
hniques of logi
, whi
h today are

used (mostly in an impli
it way, unfortunately) in the daily work of hundreds

of thousands of software engineers, an engineering view has not yet emerged as

natural and legitimate. Today, engineers usually have a rather distorted view

of logi
; many use the term \logi
" just to mean a 
ir
uit, i.e. a realization

of a Boolean formula. But logi
 has the potential to o�er mu
h more, namely

to supply another basi
 \
al
ulus" with a 
ore of te
hniques whi
h should be

known and applied by every professional systems engineer. This would involve

a 
ertain move in the orientation of logi
, from \logi
 in 
omputer s
ien
e" to

what I would 
all \logi
 for 
omputer s
ien
e". In the se
ond half of this paper

I will try to explain these 
hallenges in more detail, in whi
h way they deviate

from the fo
us of 
lassi
al mathemati
al logi
 (and even of 
lassi
al theoreti
al


omputer s
ien
e), and why I �nd them to be promising tra
ks on whi
h logi



an 
ontribute to progress in 
omputer s
ien
e.

2 Mathemati
al logi
 as an origin

There is not a single event whi
h 
an be 
alled the birth of 
omputer s
ien
e; in-

deed, this new dis
ipline evolved by a 
ompli
ated intera
tion between engineers,

mathemati
ians, and also logi
ians. But there are eminent single 
ontributions

whi
h surely were essential in forming this new s
ienti�
 �eld, several of them

from mathemati
al logi
. Among them, Alan Turing's paper of 1936 On 
om-

putable numbers, with an appli
ation to the Ents
heidungsproblem is a prominent

example. In this paper, one �nds a proposal to 
apture in pre
ise terms the most

fundamental notion of 
omputer s
ien
e (\algorithm"), one �nds the idea of a

universal ma
hine (anti
ipating the 
on
ept of programmable pro
essor), and

also �rst unsolvability results, showing prin
ipal limitations of the algorithmi


method.

Turing's paper was a 
ontribution to mathemati
al logi
; it showed that the

most famous problem of the subje
t at the time, \Hilbert's Ents
heidungsprob-

lem", is algorithmi
ally unsolvable. Let us brie
y re
all these logi
al origins of


omputer s
ien
e.

Mathemati
al logi
 is a relatively new bran
h of logi
 whi
h took shape in

the se
ond half of the nineteenth 
entury. At �rst, the aim was to join logi


with the ideas of arithmeti
 and algebra, in order to make logi
 a

essible to the

powerful algebrai
 te
hniques of formula manipulation. In the works of Boole

and S
hr�oder, interesting parts of dedu
tive reasoning were 
ast in algebrai


formalisms (in \Boolean algebra" and S
hr�oders \Algebra der Logik").

But these formalisms 
overed only small fragments of mathemati
al language

and inferen
e methods. In his pioneering monograph Begri�ss
hrift, Gottlob

Frege over
ame these de�
its. He proposed a universal formal language (in par-

ti
ular, involving quanti�ers), in whi
h one 
ould express all ordinary mathe-



mati
s, and he developed a synta
ti
 proof 
al
ulus whi
h was strong enough to

imitate mathemati
al proofs.

This su

ess su�ered from a drawba
k and some irritation whi
h originated

in Cantorian set theory by the set theoreti
 paradoxes, for example, by the para-

dox of the set of sets whi
h are not an element of itself (dis
overed independently

by Zermelo and Russell). Cantor himself had been aware of the subtleties whi
h

had to be observed when dealing with in�nite sets (and he had spoken of 
onsis-

tent and in
onsistent sets). But for a formal re
onstru
tion of the foundations

of mathemati
s, as designed by Frege, the Zermelo-Russell paradox 
ame as a

surprise and a sho
k. Hilbert, who felt like Cantor, was 
on
erned about the

perspe
tive that mathemati
s might be put into doubt. He proposed what is


alled \Hilbert's Program": to get rid of the worries about the foundations of

mathemati
s in two steps:

{ by simulating ordinary mathemati
s in a suÆ
iently strong formal system

(with a synta
ti
 proof 
al
ulus),

{ by showing with elementary means (\�nitist methods", whi
h were not sub-

je
t to doubt) that in this formal system a 
ontradi
tion like 0 = 1 
ould

not be derived.

Part of the se
ond item was \Hilbert's Ents
heidungsproblem": it asked for a

pro
edure by whi
h it 
ould be de
ided whether a given formula (like 0 = 1) is

or is not derivable in the proof 
al
ulus.

In pursuing this program, mathemati
al logi
ians 
lari�ed a 
on
ept whi
h

proved to be 
entral in the subsequent formation of 
omputer s
ien
e, namely

the 
on
ept of a formal system, with a 
lear separation of syntax and seman-

ti
s, with the notion of a formal proof 
al
ulus (de�ning \
omputational steps"),

and its properties of soundness, 
ompleteness, and 
onsisten
y. The master ex-

ample of su
h a formal system was �rst-order logi
 (or predi
ate logi
). Later,

in 
omputer s
ien
e, formal systems were 
reated in hundreds of di�erent ver-

sions, for example in the de�nition of spe
i�
ation languages, pro
ess 
al
uli,

and programming languages. But in the original 
ontext of �rst-order logi
, the

breakthrough results of mathemati
al logi
 were established:

{ G�odel's 
ompleteness theorem, showing that a �rst-order formula is valid

(true in every model) i� it 
an be derived in the proof 
al
ulus,

{ G�odel's in
ompleteness theorem, whi
h states that the senten
es whi
h are

true in the �xed model of arithmeti
 
annot be generated 
ompletely by an

axiom system (like the axioms of �rst-order Peano arithmeti
),

{ Chur
h's and Turing's 
lari�
ation of the notion of algorithm and the proof

that Hilbert's Ents
heidungsproblem is unde
idable for �rst-order logi
.

The last two results meant that the se
ond part of Hilbert's Program 
ould

not be 
arried out in the form as originally envisaged. On the other hand, the

admirable and tedious work of Frege, Russell, Whitehead, and many others had

produ
ed the astonishing fa
t that the �rst part of Hilbert's program was indeed

realizable, �rst in systems of higher-order logi
, and �nally, with the development



of set theory, even in �rst-order logi
 (based on the �rst-order axiom system ZFC,

\Zermelo-Fraenkel set theory with the axiom of 
hoi
e").

The idea of 
oding a signi�
ant part of s
ien
e in su
h a formal manner was

not new: Two hundred years earlier, Gottfried Wilhelm Leibniz had formulated

the far-rea
hing vision of a 
hara
teristi
a universalis, a universal language in

whi
h knowledge 
ould be expressed and manipulated in a 
omputational fash-

ion:

It should be possible to set up a kind of alphabet of human thoughts, and

to invent and to de
ide everything by a 
ombination of its letters and by

the analysis of the words 
omposed from them.

Leibniz had overoptimisti
 views about the realizability of his proje
t (maybe

typi
al for s
ientists who have to raise funds):

It would 
ost no more work than what is already now invested in many

treatises and en
y
lopedias. I think that some sele
ted persons 
an do

the job within �ve years, but that after two years they are already able to

master by an unfallible 
al
ulus the dis
iplines whi
h are required most

for life, i.e., moral and metaphysi
s.

1

At �rst sight, Leibniz's vision looks mu
h too ambitious to be feasible, even

when restri
ted to the domain of mathemati
s; indeed, I do not know of any

mathemati
ian or philosopher who agreed to Leibniz in that his program might

be worth trying. Leibniz himself 
ould provide only very small te
hni
al steps

towards his goal (among them the sket
h of a fragment of Boolean algebra).

Nevertheless, only two 
enturies later the program was realized for the domain

of mathemati
s.

However, an important di�eren
e has to be noted: The aim of mathemati
al

logi
 was to 
larify a very general methodologi
al question, that of 
onsisten
y of

mathemati
al assumptions and reasoning; so it was suÆ
ient to 
ode mathemat-

i
s in prin
iple, without any 
laims on a pra
ti
al use of the formalization. On

the other hand, Leibniz took the approa
h of a knowledge engineer who wanted

to set up a pra
ti
al 
al
ulus of information pro
essing. Only in the 
ontinuation

of logi
 within 
omputer s
ien
e, this pra
ti
al aspe
t began to play a role again,

when logi
 programming and automated theorem proving were developed. These

two views of logi
, that of a foundational dis
ipline as per
eived by Hilbert and

G�odel and that of a framework for pra
ti
al 
omputation as suggested by Leib-

niz, point pre
isely to the question whi
h pro�le logi
 should have today in the


ontext of 
omputer s
ien
e.

The great su

ess of mathemati
al logi
 was �rst seen in the fa
t that a

number of new mathemati
al subje
ts 
ame into existen
e, among them re-


ursion theory, model theory, set theory, and proof theory. The Handbook of

Mathemati
al Logi
 [2℄ gives a �rst impression of their beauty and strength.

These new mathemati
al subje
ts were 
reated in the very short time of only

two or three generations, and they helped to establish new 
onne
tions between

1

Quotations from [5℄ (my translation from Latin)



logi
 and other mathemati
al subje
ts (for example, algebra). On the elementary

level, a 
ore theory emerged whi
h is now part of the undergraduate 
urri
ulum:

Propositional logi
, syntax and semanti
s of �rst-order logi
, a proof 
al
ulus,

its soundness and 
ompleteness, basi
 unde
idability and in
ompleteness results,

and expressiveness results (like the 
ompa
tness theorem or separation results

on the expressive power of logi
s).

3 Logi
 in 
omputer s
ien
e

Apart from the new subje
ts 
reated within mathemati
al logi
, many areas

in theoreti
al 
omputer s
ien
e developed as o�springs of logi
. For example,

the above-mentioned logi
 subje
ts of re
ursion theory, model theory, and proof

theory all gave rise to new dis
iplines in theoreti
al 
omputer s
ien
e with a

new spe
i�
 orientation: From re
ursion theory, the area of 
omplexity theory

emerged, addressing the quantitative re�nement of 
omputability, with many

new 
on
epts and methods. Similarly, model theory took a spe
i�
 shift in re-

sponse to \the 
hallenge of 
omputer s
ien
e" (see Gurevi
h's paper [3℄), by

fo
ussing on �nite models and establishing the new �eld of des
riptive 
om-

plexity theory. Finally, the subje
t of proof theory had many 
ontinuations in


omputer s
ien
e, notably type theory, whi
h itself plays a 
entral role e.g. in

programming language semanti
s.

Today it seems impossible to give a 
omplete list all �elds in 
omputer s
ien
e

whi
h are rooted in logi
. Here is an ex
erpt (and the reader may 
onsult the

Handbook of Logi
 in Computer S
ien
e [1℄ to get a more detailed pi
ture):

{ programming language semanti
s,

{ type theory, linear logi
, 
ategori
al theories,

{ �-
al
ulus, �-
al
ulus,

{ spe
i�
ation logi
s, e.g., dynami
 logi
, Hoare logi
, temporal logi
, systems

like VDM, Z,

{ �nite model theory, data base theory,

{ term rewriting, uni�
ation, logi
 programming, fun
tional programming,

{ automated theorem proving,

{ program veri�
ation,

{ pro
ess 
al
uli and 
on
urren
y theory,

{ modal logi
, logi
s of knowledge

This list is to be 
omplemented by families of 
on
rete software systems whi
h

were designed as dire
t outgrowths of theories of logi
. Among these \pra
ti
al

su

esses" of logi
, there are the following:

{ Systems for 
ir
uit design,

{ Relational data base systems,

{ Expert systems,

{ Model 
he
kers and theorem provers.



Despite this ri
h lands
ape of theoreti
al subje
ts and 
on
rete systems, the

status of logi
 in 
omputer s
ien
e is under dispute (e.g., regarding its role in

the 
urri
ulum), and logi
 fa
es 
riti
ism of pra
titioners as being too formal

and too remote from the world of software (or systems) development pra
ti
e.

When lea�ng through the pro
eedings of logi
 
onferen
es in 
omputer s
ien
e,

one gets the feeling that this ni
e and deep resear
h is not terribly in
uential

in mainstream 
omputer s
ien
e. A standard reply to this is that the pra
ti
e

of 
omputer s
ien
e is not yet s
ienti�
 and that some time in the future the

relevan
e of the pre
ise methods will be appre
iated. I think that this kind of

reply makes things too easy and avoids fa
ing some 
hallenges whi
h in fa
t 
an

prove very fruitful for logi
.

4 Some 
hallenges in the 
ontext of engineering

A 
hara
teristi
 feature of mathemati
al logi
 is its 
on
entration on formal

systems as a whole. Usually, a logi
al framework is a formal system, and the

statements and 
laims made are 
on
erned with global properties, like 
onsis-

ten
y or 
ompleteness, expressiveness in 
omparison with other formal systems,

or questions of de
idability and 
omplexity of algorithmi
 problems about these

systems. Often, this involves the redu
tion of the phenomena under 
onsidera-

tion to the \atomi
 level", on whi
h the te
hni
al work is then performed. This

applies not only to 
lassi
al mathemati
al logi
 but also to most of the above-

mentioned logi
-oriented areas in theoreti
al 
omputer s
ien
e.

Some well-known examples might illustrate this. In Turing's analysis of the

notion of algorithm, one �nds a redu
tion of the 
on
eivable 
omputational pro-


esses to the most elementary units, the Turing ma
hine moves, and these units

are argued to be \
omplete" for dis
rete 
omputation. Similarly, in the 
on
ep-

tion of a �rst-order proof 
al
ulus, some very elementary proof steps are isolated

and formulated as proof rules, and the 
al
ulus as a whole is shown to be sound

and 
omplete. Similar statements 
an be made about other 
al
uli, like the �-


al
ulus or the �-
al
ulus, and many more formalisms (see, for example, the


on
luding se
tion of Milner's Turing Award Le
ture [4℄). The maturity and ex-

perien
e whi
h logi
 has gained in setting up, analyzing, and 
omparing formal

systems allows today su
h studies of high subtlety and s
holasti
 re�nement; it is

fun to play on this stage. (In other bran
hes of theoreti
al 
omputer s
ien
e, like

the theory of formal languages, the same tenden
y is to be seen, only di�erent

types of formal systems are studied.)

The study of formal systems and their global properties 
orresponds to the

situation in the natural s
ien
es where one also tries to redu
e existing phenom-

ena to elementary units (fa
ts and laws) su
h that the observed phenomena 
an

be explained from them. This s
ienti�
 analysis is useful and essential also in


omputer s
ien
e for a deeper understanding of the \natural laws" of informa-

tion pro
essing, but it is somewhat opposite to the interests of an engineer. He

is less 
on
erned with the extreme redu
tion of pro
esses or obje
ts, but more

with the synthesis of systems from \usable" 
omponents whi
h very rarely are



\atomi
", and he needs a 
lear terminologi
al framework whi
h supports this

synthesis. This explains why the 
omputer s
ien
e professional usually handles

units whi
h are of a quite di�erent nature than the stru
tures whi
h he sees

in his undergraduate 
ourses, say in logi
 or theoreti
al 
omputer s
ien
e. The

(software or systems) engineer would appre
iate from logi
 
on
epts and te
h-

niques as thinking tools

2

, whi
h are 
lean, adequate, and 
onvenient, to support

him (or her) in des
ribing, reasoning about, and 
onstru
ting 
omplex software

and hardware systems.

This is di�erent from the 
on
eption of uniform general theories; it empha-

sizes 
onstru
tion rather than redu
tion. In the present lands
ape of logi
, su
h


onstru
tive and useful tools exists. Let us mention some of them:

{ Propositional logi
 and ordered binary de
ision diagrams,

{ temporal logi
 and model-
he
king,

{ Horn 
lause logi
 and logi
 programming,

{ the relational data model.

But these 
on
epts and te
hniques are just mosai
 pie
es of a more 
ompre-

hensive \dis
rete system theory" whi
h an engineer 
ould use. Mu
h has to be

done to 
omplete this mosai
. To give some more detailed perspe
tive, I list �ve

general 
hallenges, the �rst four being more of methodologi
al nature, the last

giving a kind of resear
h dire
tion.

4.1 Pragmati
s is important

The 
lients of 
lassi
al mathemati
al logi
 were mathemati
ians with an interest

in the foundations of mathemati
s. This is a small, ex
ellently quali�ed audien
e.

In 
omputer s
ien
e, logi
 is (or should be) applied by hundreds of thousands of

average software engineers. It is obvious that the two 
ommunities need rather

di�erent presentations of logi
. Moreover, the impa
t of the software engineers'

logi
 edu
ation is (via the quality of their software produ
ts) by far greater than

the impa
t whi
h logi
 has ever rea
hed in foundational studies. Logi
 should

respond to this 
hallenge, and it would gain a mu
h higher signi�
an
e by a

tighter 
onne
tion to engineering. The pragmati
s of logi
 formalisms, i.e., their

suitability for everyday use, is here more important than 
lassi
al 
riteria like


ompleteness.

Let me illustrate this with a very small example. Propositional temporal logi


of linear time is known to be expressively equivalent to the �rst-order language

over labelled orderings of order type !. For a logi
ian or a mathemati
ian it is

trivial to use �rst-order formulas rather than temporal formulas. But in pra
ti
e,

it makes a di�eren
e whether one has to write down expli
itly the variables for

time points (as is ne
essary in �rst-order logi
) or whether one may use temporal

operators whi
h spare this. Experien
e shows that engineers prefer very mu
h

the variable-free framework over �rst-order logi
. Su
h aspe
ts are irrelevant in


lassi
al logi
 but have to be addressed if a widespread use of a formalism is

important.

2

This term is due to C. Jones; see his 
ontribution to this volume.



4.2 Building a new model theory

In 
lassi
al model theory, one 
onsiders �rst-order stru
tures and relations and

operations like extension, elementary extension, the formation of produ
ts, et
.

Usually, one 
onsiders one model at a time. An average software engineer, mod-

elling some appli
ation say in the obje
t-oriented UML-framework (\Uni�ed

Modelling Language"), may handle hundreds of stru
tures at the same time, of

di�erent sorts, and with mu
h more 
ompli
ated intera
tions like instantiation,

multiple referen
es, inheritan
e, et
. Neither is there (up to now) a well-de�ned

semanti
s for the full range of the UML language, nor is there a 
lear and un-

ambiguous terminology whi
h would guarantee a 
onsistent use of the obje
t-

oriented framework. To supply a 
lean and 
lear way of handling this 
haoti


world of models is both a very pra
ti
al and theoreti
ally demanding task. A

student who 
ompares the models of his logi
 
ourse to the 
omplexities of the

models whi
h he has to treat in his software engineering proje
t work may 
ome

to the 
on
lusion that theory is not very useful for him.

4.3 Merging the languages of formulas and diagrams

There are two basi
 approa
hes to the spe
i�
ation of systems and their be-

haviour: Formula based frameworks (like temporal logi
, VDM, Z) and diagram

based formalisms (like SDL, UML, State
harts). Both have their typi
al advan-

tages. By their 
on
eption, formula based frameworks are \
ompositional"; their

formulas or terms are 
onstru
ted indu
tively, and the de�nition of the seman-

ti
s usually follows this indu
tive stru
ture. On the other hand, diagrams and

graph-like obje
ts are usually more 
exible in use, and also algorithmi
 problems

like satis�ability or simpli�
ation (\minimization") are often solved more easily

here than over formulas. Classi
al results giving a pre
ise 
onne
tion between

the two approa
hes are, for instan
e, the equivalen
e between Boolean formulas

and ordered binary de
ision diagrams, and the equivalen
e between regular ex-

pressions (or monadi
 se
ond-order logi
 over words) and �nite automata. The

large-s
ale use of spe
i�
ations by diagrams seems to be typi
al for 
omputer

s
ien
e (and probably is another aspe
t of pragmati
s). Theories whi
h support

merging diagram-based languages with term- or formula-based ones would help

in designing better spe
i�
ation languages.

4.4 Taking hierar
hy seriously

The des
ription of large (software or hardware) systems is only possible by refer-

ring to their hierar
hi
al stru
ture, often re
e
ting di�erent levels of abstra
tion.

A \spe
i�
ation" is often more a kind of book than a kind of formula. The basi


models of logi
 (and of theoreti
al 
omputer s
ien
e), like �rst-order stru
tures

or automata, are 
at, and their measure of 
omplexity is often simply their size

(number of elements or states). This is highly inadequate in the study of non-

trivial systems; \hierar
hy level" should be a �rst-
lass parameter. There are



promising theoreti
al models supporting hierar
hi
al des
riptions and 
onstru
-

tions, like 
ommuni
ating or hierar
hi
al state-ma
hines, state
harts, or Gure-

vi
h's abstra
t state ma
hines. But the theory of their behaviour is not yet well

developed, and more work has to be invested to make it a

essible to engineers.

The systems of 
omputer s
ien
e 
over su
h a wide range of levels of hierar
hy

today that it even seems doubtful to try to 
over them by just one methodology.

In natural s
ien
e, it is agreed that di�erent levels of organization require di�er-

ent 
on
epts and laws, as seen in the division of s
ien
e into �elds like physi
s,


hemistry, and biology. The hierar
hi
al world of information pro
essing systems

has rea
hed a ri
hness where the same question arises. An example may illus-

trate this aspe
t: It is 
lear that in the memory 
ells of a pro
essor a single bit

matters. But on the level of the world-wide web this is no more true; there, it

usually does not even matter whether a whole server is down. So, in tea
hing

\foundations of 
omputer s
ien
e", it is probably no more appropriate to map

everything (in prin
iple) to the 
at world of �nite automata or Turing ma
hines.

This is like trying to explain 
hemi
al or biologi
al phenomena just with the


on
epts and laws of physi
s.

4.5 The 
hallenge of the web

In the past ten years, the development of the world-wide web has 
aused a

revolution in the world of information pro
essing. The framework for the publi-


ation and ex
hange of s
ienti�
 results is 
hanging deeply and rapidly. Today,

a large part of s
ienti�
 knowledge is avalaible not only in symboli
 form (i.e.,

in texts), but also in a format whi
h supports ma
hine-based sear
h, analysis,

and 
omposition. This gives a 
ompleteley new perspe
tive to Leibniz's proje
t

of a universal framework for the management of knowledge. It is rather 
lear

that new kinds of \inferen
e" and \
omposition of propositions" have to be de-

veloped to handle the potentials of the web adequately. Leibniz would probably

be enthusiasti
 about this wonderful new arena for logi
. But in a
ademi
 logi
,

these pra
ti
al Leibnizian tasks do not attra
t mu
h interest. Instead, 
omputer

s
ientists, in parti
ular data base resear
hers, are addressing these questions.

3

Sometimes I have the impression that we are living in a golden age of logi
 but

that logi
 does not know it.

5 Con
lusion

In the se
tions above, I argued that 
omputer s
ien
e gives to logi
 new 
hal-

lenges and perspe
tives, in parti
ular, to develop 
lean, adequate, and 
onvenient

methods for modelling and 
onstru
ting dis
rete systems (software and hardware

systems). For a
hieving this, logi
 would no more stay just a foundational s
ien
e,

but also fun
tion as an engineering-oriented (however theoreti
al!) dis
ipline. It

should give to system engineers mathemati
al tools whi
h they require in any


onstru
tions whi
h are done \a

ording to professional standards".

3

see the paper of G. Weikum in this volume



For other parts of mathemati
s, it is agreed whi
h methods and tools belong

to su
h a standard: For example, every engineer has to know how to use linear

di�erential equations and the Lapla
e transform. This is part of what is 
alled

\mathemati
al modelling". The restri
tion of this term to 
ontinuous models is

no more adequate today, be
ause highly nontrivial dis
rete systems, espe
ially

software systems, o

ur in the daily pra
ti
e of virtually every engineer (not

only in software engineering). In an evolving dis
ipline of \dis
rete modelling"

and \dis
rete system theory", logi
 has a signi�
ant part (together with other

�elds like data stru
tures, automata theory, algorithmi
s). In the long run, this

dis
rete system theory should provide a \
al
ulus" whi
h is to be applied in any

professionally performed 
onstru
tion of software systems.

When this 
hallenge is taken seriously, the fo
us of logi
 will be shifted beyond

the s
ope of 
lassi
al mathemati
al logi
, even more as it already did during the

formation of theoreti
al 
omputer s
ien
e. Some mathemati
al logi
ians will say

that these tasks should be 
arried out by 
omputer s
ientists, and some logi
ians

in 
omputer s
ien
e may say that data base theorists, programming language

resear
hers, or software spe
ialists will do the job. Anyway, if logi
ians of any


avour would agree that 
hallenges like the ones mentioned above are interesting

and not just an outgrowth of a fashion, then their expertise would 
ontribute to

a mu
h faster progress. Moreover, there would be less dis
ussion whether logi


institutes be 
losed or logi
 professorships 
an
elled. The best response to the


hallenges raised above is an intensive 
ooperation between logi
ians, 
omputer

s
ientists, and engineers.

A word of 
aution seems to be in order. The idea to develop a new way of

tea
hing logi
 to engineers does not mean to throw all the treasures away whi
h

logi
 has given us. Espe
ially for basi
 
ourses it is important to present 
oherent

and lu
id theory, as it was developed in logi
 by a long pro
ess of s
ienti�
 e�ort.

At the present time, it seems that a 
omprehensive and polished treatment of

\logi
 for engineers" does not yet exist. Many more steps are needed to arrive at

it, espe
ially to separate the lasting prin
iples from the hot but sometines not

so deep topi
s.

The task of shaping 
lean, adequate, and 
onvenient theoreti
al frameworks

whi
h 
an be taught to and are usable by engineers, is hard and requires the

study of engineering pra
ti
e. It will not be funded mu
h, will for a long time

not share the glory of industrial partnerships (as many \applied" proje
ts do),

and it will be progressing slowly. But the long-term impa
t will be high, and I

am 
ertain that over the 
oming de
ades the demand for this kind of resear
h

will grow, in the same way as the demand for reliable and manageable software

systems will grow.

6 A
knowledgment

I thank several 
olleagues for their helpful 
omments on a draft of this paper,

in parti
ular Heinz-Dieter Ebbinghaus, J�org Flum, Eri
h Gr�adel, and Reinhard

Wilhelm.



Referen
es

1. S. Abramsky, D. M. Gabbay, T.S.E. Maibaum (eds.) Handbook of Logi
 in Com-

puter S
ien
e, Vols. I - IV, Clarendon Press, Oxford 1992-1995.

2. J. Barwise (ed.), Handbook of Mathemati
al Logi
, North-Holland, Amsterdam

1977.

3. Y. Gurevi
h, Logi
 and the 
hallenge of 
omputer s
ien
e, in: Current Trends in

Theoreti
al Computer S
ien
e (E. B�orger, ed.), Computer S
ien
e Press, 1988, pp.

1-57.

4. R. Milner, Elements of intera
tion - Turing Award Le
ture, Comm. ACM 36(1),

1993, pp. 78-89.

5. G.W. Leibniz, Anfangsgr�unde einer allgemeinen Charakteristik (Latin original un-

titled), in: Die philosophis
hen S
hriften von Gottfried Wilhelm Leibniz (C. I. Ger-

hardt, ed.), Vol. VII, Berlin 1890, p. 185 �.


