
Lecture 9: The Splitting Method for SAT

1 Importance of SAT

Cook-Levin Theorem: SAT is NP-complete.
The reason why SAT is an important problem can be summarized as below:

1. A natural NP-Complete problem.

2. We can prove NP hardness of other problems by reducing SAT to them.

3. We can solve other problems by reducing them to SAT and then solving
SAT.

The focus of this lecture is on SAT solving.
Complexity of NP-Complete problems is usually defined in terms of worst-

case. SAT best known worst-case complexity is around 1.3n. Does this mean all
other NP-complete problems have worst-casecomplexity of 1.3n? No, because
it also depends on the complexity of the reduction. Now, the reduction to is
polynomial, but how large is the the polynomial? For example, 1.3n is very
different from 1.3n2

.
Our approach here would be to develop heuristics that would work well in

practice.

2 Developing an algorithm for solving SAT

Since SAT is a very important problem, we would like to develop efficient al-
gorithms for its solution. SAT being NP-Complete implies that SAT solvers
are general problem solving engines. The algorithm to solve it is going to be
exponential (to the best of our knowledge so far). A naive SAT algorithm would
look like one shown below:

SAT (ϕ)
B := FALSE
for all τ ∈ 2AP (ϕ)

B := B ∨ τ(ϕ)
return B

1

Yet, given two exponential algorithms, one can be exponentially better than
the other! This means that we should look for possible optimizations. Some of
the obvious improvements to the above problem are:

1. Return early as soon as B is true.

2. Look for sub-formulas to prune the search space.

In particular, below we give a few examples where the problem could be
solved really easily because the formula has some property that we can detect.

• Consider ϕ = (p ∨ q ∨ ¬r) ∧ (q ∨ ¬r ∨ s) ∧ · · · ∧ s ∧ (¬s). The formula can
be arbitrarily long, but still, because it contains a contradiction s ∧ (¬s)
it is unsatisfiable no matter what the truth assignment is to the other
variables!

• Consider the formula ϕ = (ψ ∨ p), where ψ is a complicated formula. We
can satisfy ϕ easily by taking p to be true.

• Another example is a formula like ϕ = p ∧ ψ, where ψ is also a formula.
Although we cannot immediatly say anything about the final result, we
can reduce the problem in size. Specifically, p must be true, otherwise
the formula is obviously not satisfiable. So we can assign to proposition p
its only possible truth value, and propagate this assignment to ψ. Thus,
p becomes a constant and the original formula that we had to check is
transformed to an equivalent formula which is simpler since it has one less
variable.

The approach we will take is to search for a satisfying truth assignment
incrementally, using the principle of “Divide and Conquer”1. Here we present
a simplified version, and the course project will be to build a very fast version.

To deal with partial truth assignments we need to propagate truth values
into formulas. We start by defining extended formulas:

FORM ′ = FORM ∪ {0, 1}.
This practically means that we now consider the constants 0 and 1 as ex-

tended formulas. We now show that extended formulas satisfy the closure con-
dition, that is, they are closed under the propositional connectives.

• ¬ : FORM ′ → FORM ′.

• ◦ : FORM ′ × FORM ′ → FORM ′

are defined as follows:

¬(ϕ) =

 1, ϕ = 0
0, ϕ = 1
(¬ϕ), ϕ ∈ FORM

,

1Divide et impera

2

∨(ϕ,ψ) =

1 ϕ = 1
1 ψ = 1
0 ϕ = 0 and ψ = 0
(ϕ ∨ ψ) ϕ,ψ ∈ FORM
ψ ϕ = 0 and ψ ∈ FORM
ϕ ψ = 0 and ϕ ∈ FORM

,

∧(ϕ,ψ) =

0 ϕ = 0
0 ψ = 0
1 ϕ = 1 and ψ = 1
(ϕ ∧ ψ) ϕ,ψ ∈ FORM
ψ ϕ = 1 and ψ ∈ FORM
ϕ ψ = 1 and ϕ ∈ FORM

,

→ (ϕ,ψ) =

0 ϕ = 1 and ψ = 0
1 ϕ = 0 or ψ = 1
(ϕ→ ψ) ϕ,ψ ∈ FORM
ψ ϕ = 1 and ψ ∈ FORM
¬ϕ ψ = 0 and ϕ ∈ FORM

,

↔ (ϕ,ψ) =

0 ϕ = 1 and ψ = 0
0 ϕ = 0 and ψ = 1
1 ϕ = 1 and ψ = 1
1 ϕ = 0 and ψ = 0
(ϕ↔ ψ) ϕ,ψ ∈ FORM
ψ ϕ = 1 and ψ ∈ FORM
ϕ ψ = 1 and ϕ ∈ FORM
¬ϕ ψ = 0 and ϕ ∈ FORM
¬ψ ϕ = 0 and ψ ∈ FORM

.

Now we can define simplification by substituting a logical value into an
atomic proposition in an extended formula:
Let ϕ ∈ Form. Let c ∈ {0, 1}. Let p ∈ AP .

ϕ[p 7→ c] =

c if ϕ = p
q if for some q 6= p, ϕ = q
¬(ϕ′[p 7→ c]) if ϕ = (¬ϕ′)
◦(ϕ1[p 7→ c], ϕ2[p 7→ c]) if ϕ = (ϕ1oϕ2)

Now we build on the naive SAT solver algorithm to create a general algorithm
that will allow us to determine whether a formula is satisfiable. In order to
justify the correctness of the algorithm, we need several lemmas. The following
lemma, states that by substituting a proposition with its truth assignment, we
do not change the satisfiability of the formula.

Lemma 1 (Substitution). Let ϕ ∈ Form, τ ∈ 2AP (ϕ), and p ∈ AP (ϕ). Then
τ |= ϕ ⇐⇒ τ

AP (ϕ)−{p} |= ϕ[p 7→ τ(p)].

3

Note: AP (ϕ[p 7→ c]) = AP (ϕ)− {p}
Reminder: For a function f , f : X → Y , given X ′ ⊆ X, then f |X′ : X ′ 7→ Y ,
defined by: if a ∈ X ′ then f |X′ (a) = f(a)

Essentially, this means that if we keep simplifying, eventually we will just
get 1 or 0. The proof of Lemma 1 is one of the exercises on Homework 3.

Now we can go back to satisfiability:

Corollary 2. Let ϕ ∈ Form, and p ∈ AP (ϕ). Then ϕ is satisfiable ⇐⇒
ϕ[p 7→ 0] is satisfiable or ϕ[p 7→ 1] is satisfiable.

Proof.
⇒ Suppose that ϕ is satisfiable. Then τ |= ϕ for some τ ∈ 2AP (ϕ). By the

lemma above, τ
AP (ϕ)−{p} |= ϕ[p 7→ τ(p)]. But either τ(p) = 0 or τ(p) = 1.

So either ϕ[p 7→ 0] or ϕ[p 7→ 1] is satisfiable.
⇐

• Suppose ϕ[p 7→ 0] is satisfiable. Then τ |= ϕ[p 7→ 0] for some τ ∈
2AP (ϕ)−{p}. Define τ ′ ∈ 2AP (ϕ) as follows:

τ ′(q) =
{

0, if q is p
τ(q), otherwise

By the Substitution Lemma (Lemma 1), τ ′ |= ϕ. So ϕ is satisfiable.

• Suppose ϕ[p 7→ 1] is satisfiable.Then τ |= ϕ[p 7→ 1] for some τ ∈ 2AP (ϕ)−{p}

Define τ ′ ∈ 2AP (ϕ) as follows:

τ ′(q) =
{

1, if q is p
τ(q), otherwise

By the Substitution Lemma, τ ′ |= ϕ. So ϕ is satisfiable.
ut

Lemma 1 tells us that SAT is self-reducible, that is, if we have an algorithm
for SAT, then we can turn it into a search for a satisfying truth assignment.

Lemma 1 also suggests a strategy for solving SAT. Here we present a sim-
plified version, and the course project will be to build a very fast version.

3 Splitting Method

The algorithms works as follows:

SAT (Form ϕ)
if ϕ is 1 then return true
if ϕ is 0 then fail (backtrack or return false)
choose p ∈ AP (ϕ), choose c ∈ {0, 1}
if SAT (ϕ[p 7→ c]) then return true
if SAT (ϕ[p 7→ 1− c]) then return true
return false

4

The running time of this procedure is still exponential, O(2|ϕ|), but it will
usually be much more efficient than the truth-table algorithm. Note, however,
that it is important how we choose p and c in this algorithm. If they are chosen
poorly, the running time for this procedure will be no better than that of the
simple truth table algorithm.

The space requirement is equal to the size of the call stack. The worst case
stack depth is O(|ϕ|), and each stack frame is of linear size. This makes the
space requirements polynomial with the size of the input formula.

If we do not want to do the same work twice, we can use “memoing”. That
is, once we determine whether a formula is satisfiable, we record this. When we
reach a formula that has already been examined, we look up the saved result.
This technique saves time, but could use exponential space. In effect, we are
trading space for time.

The Splitting Method is the dominant method of solving large SAT problems
right now. It can be very fast in practice.

3.1 CNF

There’s another approach to handling NP-complete problems, which is to look at
subproblems that might be easier. A natural class of formulas is a conjunction of
requirements. If we restrict these requirements to implications and disjunctions,
we end up in conjunctive normal form (CNF). It will be shown later than every
formula has an equivalent in CNF.

Definition 1. A literal is a proposition or its negation. A disjunctive clause is
a disjunction of literals. A CNF formula is a conjunction of disjunctive clauses.
If every clause has at most k literals, the formula is in k-CNF.

To explore the boundary of computability, we gradually increase the k in k-
CNF and see how far we get. A 0-CNF formula is the set of empty constraints,
and is satisfied in all worlds.

Lemma 3. A 1-CNF formula is satisfiable iff it does not contain conflicting
literals. (conflicting literals: p ∧ ¬p). 1-CNF-SAT is in PTIME.

That 2 − CNF is in PTIME, while 3-CNF is NP-complete, will be proven
later in the course. Therefore, summarizing our results:

0− CNF -SAT: PTIME.

1− CNF -SAT: PTIME.

2− CNF -SAT: PTIME.

3− CNF -SAT: NP-complete.

Therefore, for k − CNF -SAT the boundary is between 2 − CNF -SAT and
3− CNF -SAT.

Now let’s revisit the splitting method and see how we can speed up the
performance.

5

4 Revisiting the Splitting Method

When employing the splitting method on CNF formulas, we can devise a number
of useful heuristics.

• Unit clauses are formulas of the form

p or ¬p.

• The unit preference rule : If ϕ has a unit clause p, then we choose p and
assign it 1 (and we can ignore p 7→ 0). If ϕ has a unit clause ¬p, we choose
p and assign it 0.

• Polarity: if a proposition p only occurs as a positive or negative literal,
select p in this step and assign appropriately. This requires we track the
polarity of each proposition.

• Subsumption: If there are two clauses c and c′ where c ⊆ c′, then we can
eliminate c′. If c is satisfied, then c′ is satisfied, and if c is not satisfied
then we are already have a counterexample. This potentially requires a
quadratic number of comparisons at each step, and its value is not clear.

Of the above heuristics, the most useful is the unit preference rule. Using the
splitting method on CNF formulas with unit preference gives us the DPLL(Davis-
Putnam-Longemann-Loveland) algorithm.

SAT (ϕ)
if ϕ is 1, return 1
if ϕ i 0, fail and backtrack or 0
choose p ∈ AP (ϕ) and c ∈ 0, 1 [Unit Preference]
if SAT (ϕ[p 7→ c]) return true
else return SAT (ϕ[p 7→ 1− c])

6

