Lecture 6: Classification of Formulas

1 Review of Previous Material

1.1 Multiple Viewpoints of Semantics

Semantics is the relationship between formulas and truth values. Previously,
we gave three different but equivalent definitions for the formal semantics of
propositional logic. We defined a satisfaction relation = : C 2PFOP x FORM
such that

TE e e(r) =1 7€ models(p)
1.2 Types of Formulas

For any formula ¢, by definition, we have () C models(¢) C 2PROP. So ¢ can
be put in one of three categories:

e ¢ is walid or a tautology if for every 7 € 247%) 1 = .
e ¢ is unsatisfiable or a contradiction or for every T € 24P(0) 7 |£ .

e o is satisfiable if there exists 7 € 247(%) such that 7 |= ¢.

For example, ((a A (a — b)) — b) is a tautology, (a A —a) is a contradiction,
and (a A b) is satisfiable, but not a tautology. Note that every valid formula is
also satisfiable. So the class of valid formulas is a subclass of satisfiable formulas.

There is an intuitive relationship between the different classes:

Lemma 1.
1. v is valid <= () is not satisfiable.
2. 9 is not valid < () is satisfiable.
3. 9 is satisfiable < () is not valid.

These can be easily proved simply from the definitions.



2 Lifting |-

In the previous lectures, the satisfaction relation = was defined over the set
2Frop 5 FORM, i.e. it was restricted to a single truth assignment and a single
formula. Now we extend this definition to sets. We will write T = ® where T
is a set of truth assignments and ® is a set of formulas. That is 7' C 2°7°P and
® C FORM.

To define the semantics of = over sets we use a standard construction called
universal lifting. If applied to a relation R C A x B, this construction defines
another relation R’ C 24 x 25 such that

R(P,Q) < VYpe P,qeQ: R(p,q),

i.e. two sets are related in R’ iff each pair of elements is related in R.

There are other type of lifting such as existential lifting, which means two
sets A and B are related in R’ iff there exists a pair of elements in A and B
which are related in R. For |=, we only use universal lifting.

Definition 1. For a set T € 22 and a set ® € 2FORM "1 = @ if for every
T €T and every ¢ € &, 7 = .

This says that a set truth assignments satisfies a set of formulas if all assign-
ments in the set satisfy all formulas.

3 Lifting models

Recall that every formula ¢ is associated with a set of truth assignments models(¢) C
2P7oP guch that 7 |= ¢ iff 7 € models(p). We can extend this definition to sets
as well so that models becomes a function that takes sets of formulas to sets of
truth assignments, that is, models : 2FORM i

We must first decide what it means for a truth assignment 7 to satisfy a set
of formulas ®. We interpret ® = {1, ¢o,...} as a big conjunction p; Awa A. ..
of its elements; in this case, 7 satisfies ® only if it satisfies each ;. This is
called the conjunctive interpretation of commas.

Definition 2. For & ¢ 2FORM,

— 2

models(®) := ﬂ models(p)
ped

An interesting point here is to consider what the value of models(®) should
be when ® is empty. By set-theoretic convention, an empty intersection is
defined to be the universal set. Thus, by convention, models(()) = 2PROP.

With the above definition of models, we can obtain a lifted version of the
result that 7 | ¢ iff 7 € models(p) as follows:

Lemma 2. For T € 227" and & € 2FORM

TE @ if T C models(P)



Note that the membership operator (€) from the single-element definition
of = has been replaced with a subset operator (C).

Proof. T = ¢
ifft vr e T, ¢ € &, we have 7 € models(y)

iff V7 € T', we have 7 € (1) .4 models(p)
iff V7 € T, we have 7 € models(®)
iff T C models(®). O

4 Logical Implication

Observe that the function models maps a a set of formulas to a set of truth
assignments, while |= relates sets of truth assignments to sets of formulas. We
can combine the two to overload |= yet again and define it as a binary relation on
sets of formulas. This relation, C 2FORM x o2FORM 'ig called logical implication.

Definition 3. For ®, ¥ ¢ 2FORM
O =T if models(P) C models(P)

By notational convention, when ¥ and & are singleton sets (i.e. contain a
single formula ¢ € ® and ¥ € V) we write ¢ |= ¢ instead of {¢} = {¢}. Note
that the set of models of the left set of formulas may be equal to the set of models
of the right set of formulas. For example, this is true for {p,q} = {(p A ¢)}.
Every truth assignment that satisfies the formulas p and ¢ also satisfies (p A q)
and vice versa. However, there are also cases where models(®) is a strict subset
of models(¥), e.g. in the case of {p,q} = {(pV ¢)}.

The name ‘logical implication’ already hints that there is a strong relation-
ship between this interpretation of = and the — operator. If ® = ¥, then @
represents a set of ‘claims’, and W is true whenever the claims hold — regardless
of the truth assignment.

4.1 Logical Implication vs. Material Implication

Logical implication is a very fundamental idea in logic. This relation represents
a relationship between formulas where if you accept one set of formulas as true
then the others will also be true, regardless of the truth assignment.
It is instructive to look at the relationship between logical implication, as
defined above, and material implication which is the ‘implies’ operator —.
Recall the definition of logical implication

o =g if T =1 then 7 =,V 7 € 2F7P

Look at the case where ¥ — ¢ is valid. This means 7 = ¢ — 7 | ¢ for all
7 € 2P7°P_ But this is the same as saying if 7 = 1 then 7 |= . But this is just
the same as logical implication!

So we see that logical implication happens exactly when material implication
holds regardless of the current set of facts. This leads to the following lemma:



Lemma 3. ¢ E¢ < ¢ — ¢ is valid.

In other words, logical implication is the validity of material implication.

4.2 Another meaning of |

What does it mean to say that () | U, where U is a set of formulas? The empty
set has no “type”, so it could be an empty set of formulas or an empty set of
assignments.

e Suppose that () is an element of 22" " Since the empty set is a subset
of every set, in particular () C models(®). In this case () = ¥ is trivially
true. Obviously this interpretation is not very interesting.

e The second alternative is to consider () as an element of 2FORM By

definition, the relation § = ® holds iff models(h) C models(®). But
what is models()? The definition of models tells us that models() =
Nmodels(yp) for all ¢ € . By set-theoretic convention, intersection builds
from the top-down, that is, we start from the universal set and throw out
all elements which are not present in every set whose intersection is being
taken. So in the case of the empty intersection, no elements are thrown
out and the empty intersection equals the universal set. So, by convention,
models(()) = 2PROP Tn other words, ) = ¥ holds iff models(®) = 2FROP,
which is another way of saying that @ is valid. Thus, §} = ® means that
® is valid.

The second interpretation is the one that is customarily used. This gives us
another meaning for |=. Moreover, we can drop the ) from the left-hand side,
thereby making = into an unary operator. We formalize this idea with the next
definition.

Definition 4 (= as validity). Given U € 2FORM e yse = W to denote that
each formula in V is valid. That is,

= W if models(¥) = 2PROP
This also gives us a shorter way of stating Lemma 77:

o EYiff = (p— 1)

The overloading of |= is an example of polymorphism. The types of its
arguments determine the meaning of the operator.

4.3 Logical Equivalence

When & = ¥ and ¥ = ® we have the special case of logical equivalence. From
the definition of = we can infer that models(®) = models(¥). This is written
as ®== V. Intuitively, ® and ¥ convey the same information.



Definition 5 (Logical Equivalence). =SV iff ® = U and ¥ | O.

It is easy to infer that the relation == is reflexive, symmetric and transitive.

== partitions 2FORM into equivalence classes. There are two special equivalence
classes:

e The equivalence class of (pV(—p)) contains all valid formulas or tautologies.

e The equivalence class of (p V (—p)) contains all unsatisfiable formulas or
contradictions.

5 Properties of =

5.1 Reflexivity, Symmetry, and Transitivity

There are three fundamental properties that each relation is tested for: reflex-
wity, symmetry, and transitivity. We will examine these three properties for

1. Reflexivity: | is reflexive, because models(®) C models(P).

2. Symmetry: | is not symmetric. To see why this is the case, consider
® = {pAgq}and ¥ = {p}. Clearly ® = U but the reverse is not true:
U b~ ®. |= is not antisymmetric either, since C is not antisymmetric and
k= is defined by set containment between sets of truth assignments.

3. Transitivity: |= is transitive, because if ® |= ¥ and ¥ |= O, then models(®P)
models(¥) C models(0). Thus ® = O.

A relation that is reflexive and transitive, but not symmetric, is called a partial
order or weak partial order. From the above we can see that |= is a weak partial
order, because it is reflexive, not symmetric and transitive. Another weak partial
order is C.
5.2 Monotonicity
Definition 6. Monotonicity

o A function fis monotone if x <y = f(x) < f(y).

e A function fis anti-monotone if x <y = f(y) < f(x)

When we are dealing with relations we also distinguish between left and
right monotonicity, according to the following definitions:

e Left Monotonicity: xRy Az’ > x = 'Ry
e Right Monotonicity: xRy Ay’ >y = xRy’

e Left Anti-Monotonicity: zRy Az’ < xz = z'Ry

N



e Right Anti-Monotonicity: xRy Ay’ <y = xRy’

For example, the algebraic operator “<” is left anti-monotonic and right mono-
tonic, while the operator “>" is left monotonic and right anti-monotonic.

To determine the monotonicity of = we first need to consider the monotonic-
ity of “C”. Intuitively, if z C y, we can remove items from x and add items to
y without disrupting the validity of the statement. This means that C is left
anti-monotonic and right monotonic

Similar observations can be made for models(®) = Nmodels(yp) for all p € .
If ® C @ then models(®’) C models(P). The intuition is that adding more
things to the set can only make the intersection smaller; more constraints make
for fewer conclusions. Thus, models is anti-monotone.

Now recall that |= is a combination of C and models(®). When we combine
a left anti-monotonic, right monotonic relation with an anti-monotone operator,
the operator reverses the monotonicity of the relation. Thus,

e |= is left monotonic
e |= is right anti-monotonic

Informally, this states that we can always take away consequences or add as-
sumptions and validity will still hold. In common-sense reasoning, this is not
always the case. For example, if we know that “Tweety is a bird”, we infer
that “T'weety can fly”. But if we are now told that “Tweety is a penguin”, then
we withdraw the conclusion that Tweety can fly. It turns out that in day-to-
day reasoning adding more assumptions doesn’t necessarily preserve the logical
implication. This phenomenon is called non-monotonic reasoning and it is an
important research area in Logic.



