
Lecture 3: Semantics of Propositional Logic

1 Semantics of Propositional Logic

Every language has two aspects: syntax and semantics. While syntax deals
with the form or structure of the language, it is semantics that adds meaning to
the form. The words or expressions of the language are interpreted with respect
to some world. Semantics is a mapping from the language to that world. In the
case of propositional logic, the words of the language are the formulas in FORM
and the world in which the formulas should be interpreted is given by a truth
assignment τ : PROP → {0, 1}, which is a function that assigns true or false to
each atomic proposition in PROP.

Now a function that assigns 0 or 1 to each element of a set can also be viewed
as selecting a subset of the set: if an element is assigned value 1 then add it
to the subset, otherwise leave it out. Thus, such a function can be uniquely
identified with a subset of its domain. With this intuition, which we formalize
below, each subset of PROP can be viewed as a truth assignment. The set of all
truth assignments, which is also called the set of possible worlds, the semantical
domain, or the domain of discourse, is 2PROP. Semantics is the relation between
FORM, the set of all formulas, and 2PROP, the set of all worlds. We call this
relation satisfaction, denoted by |=, where |=⊆ 2PROP × FORM.

Definition 1. A truth assignment, τ , is an element of 2PROP.

There are two ways to think of truth assignments:

1. 2PROP can be thought of as the power set of all propositions, and a truth
assignment X is an element of it, that is, X ⊆ PROP. Accordingly, a
proposition is true if it is in the subset X of 2PROP and is otherwise false.

2. Or, we can think of 2PROP as the set of all functions from PROP to the
set {0, 1}. Then, a truth assignment is a map τ : PROP 7→ {0, 1}. A
proposition is true if it maps to 1.

These notions are equivalent since given X ⊆ PROP, we can define τX :
PROP 7→ {0, 1} by

τX(p) =
{

1 if p ∈ X
0 if p /∈ X
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which is the characteristic function of X. Conversely, given τ : PROP 7→
{0, 1}, we can take Xτ = {p|τ(p) = 1}.

Recall from the first lecture, that logic is used in many different fields includ-
ing philosophy, foundational mathematics, computer science and electrical engi-
neering. Each of these fields bring their own approach to logic based upon their
different needs and motivations. For example, while philosophers use logic to
reason about fundamental concepts such as truth and knowledge, electrical engi-
neers use logic to build a mathematical foundation for their theory of electronic
circuits. Here we look at how the semantics of propositional logic are defined
by different fields that use logic. We will look at three different perspectives:

1. philosopher’s view

2. electrical engineer’s view

3. software engineer’s view

We will see that despite their very different approaches to the subject, the
different definitions are equivalent.

2 Philosopher’s view

For a philosopher, semantics is a binary relation |= between structures and
formulas. τ |= ϕ means:

1. τ satisfies ϕ or

2. τ is true of ϕ or

3. ϕ holds at τ or

4. τ is a model of ϕ.

Example:
object τ : table
formular ϕ: this table is round
τ |= ϕ can be either true of false

Definition 2. |=⊆ (2PROP×FORM) is a binary relation, between truth assign-
ments and formulas. |= is called the satisfaction relation, semantical relation,
or the truth relation. We define it inductively as follows:

• τ |= p, for p ∈ PROP, if τ(p) = 1, meaning that p holds if p is true.

• τ |= (¬ϕ) if it is not the case that τ |= ϕ, that is, if τ 6|= ϕ (Note: this is
so only in 2-valued world).
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• τ |= (ϕ ∨ ψ) if τ |= ϕ or τ |= ψ.

• τ |= (ϕ ∧ ψ) if τ |= ϕ and τ |= ψ.

• τ |= (ϕ→ ψ) if τ |= ϕ implies τ |= ψ, i.e. if τ 6|= ϕ or τ |= ψ.

• τ |= (ϕ↔ ψ) if τ |= ϕ iff τ |= ψ.

It is important to realize that the semantics is well defined because of the
Unique Readability Theorem. The definition above relies on the fact that, given
a formula, we can talk about its primary connective and its immediate subfor-
mula(s) without ambiguity. Without unique readability, we would not have
well-defined semantics. Suppose for example that we do not require parenthe-
ses, and consider the “formula” p∧ q∨ r. Let τ be a truth assignment such that
τ(p) = 0, τ(q) = 1, and τ(r) = 1. Since the example formula does not have
a unique primary connective, its meaning may be defined in the following two
ways:

• τ |= p∧q∨r iff τ |= p and τ |= q∨r. Since τ 6|= p, we have that τ 6|= p∧q∨r.

• τ |= p ∧ q ∨ r iff τ |= p ∧ q and τ |= r. Since τ |= r, τ |= p ∧ q ∨ r.

According to the above example, a formula could have two different truth
values if it did not have a unique primary connective. A similar kind of ambi-
guity exists also in natural languages. Consider the following English phrase:
“John hates Jim and he likes Jill”. Who is he? It is ambiguous.

This points out an important feature of this definition, the compositionality
of |=. An example is τ |= (ϕ∧ψ). All that is needed is information about τ |= ϕ
and τ |= ψ and those answers are independent of each other. This is alot like
modularity in programming.

3 Electrical Engineer view

To an electrical engineer the truth assignment is simply a mapping of voltages
on a wire: τ : Prop→ {0, 1}

Operations are carried out by gates, which represent logical connectives. The
value of the voltage along the wire is continuous, hence a zero value is assigned
to an interval of voltages and a one is assigned to a non-overlapping interval of
voltage. An AND gate takes in two voltages and returns a voltage representing
1 if and only if both input voltages represented a 1. In general, a k-ary gate g
is a mapping g : {0, 1}k → {0, 1}. It takes in voltages and returns a voltage as
dictated by its logical specification. Here are some examples:

• ¬ : {0, 1} → {0, 1}

– ¬(0) = 1 and ¬(1) = 0

• ∧ : {0, 1}2 → {0, 1}
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– ∧(0, 0) = ∧(1, 0) = ∧(0, 1) = 0 and ∧(1, 1) = 1

• ∨ : {0, 1}2 → {0, 1}

– ∨(1, 1) = ∨(1, 0) = ∨(0, 1) = 1 and ∨(0, 0) = 0

• →: {0, 1}2 → {0, 1}

– → (1, 1) =→ (0, 0) =→ (0, 1) = 1 and → (1, 0) = 0

• ↔: {0, 1}2 → {0, 1}

– ↔ (1, 1) =↔ (0, 0) = 1 and ↔ (1, 0) =↔ (0, 1) = 0

We can now think of a formula as a circuit, which maps truth assignments
to Boolean values: ϕ : 2Prop → {0, 1}.

The logical operands, defined previously in the section on logic in philosophy,
can be alternatively defined as gates that take in the inputs ϕ and ψ and returns
the specified output.

ϕ, ψ (¬ϕ) (ϕ ∧ ψ) (ϕ ∨ ψ) (ϕ→ ψ) (ϕ↔ ψ)
0 0 1 1 0 1 1 ? the ¬ takes a single
1 0 0 1 0 0 0 immediate subformula
0 1 ? 1 0 1 0 and has only two
1 1 ? 0 1 1 1 possible inputs.

Definition 3. Let p ∈ Prop, τ ∈ 2Prop. Then the semantics is defined according
to the following rules:

• p(τ) = τ(p) (a proposition viewed as a circuit is just a wire)

• (¬ϕ)(τ) = ¬(ϕ(τ))

• (ϕ ◦ ψ)(τ) = ◦(ϕ(τ), ψ(τ))

The first rule says that τ maps a proposition to its truth value. The second
and third rule say that with a given τ the value of a formula can be determined
from the truth values of its immediate subformulae by applying the primary
connective, its functionality defined in the above table, to the values of the
immediate subformulas under the same τ .

Next we prove that these two semantic formulations are equivalent. The
transition between each step in the proof uses equivalence, meaning that the
steps can be reversed to prove the only if part of the lemma. Notice the almost
mechanical pattern of the proof. In each case the philosopher’s definition is
applied first, followed by the inductive hypothesis, followed by application of
the above table, followed by application of the electrical engineer’s definition of
the connective.

Lemma 1. Let ϕ ∈ Form and τ ∈ 2Prop. Then τ |= ϕ iff ϕ(τ) = 1.

Proof. Proof by structural induction:
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Basis : ϕ = p, for p ∈ PROP. Then τ |= ϕ iff τ(p) = 1 iff p(τ) = 1.

Inductive Step :

1. ϕ = (¬ψ). Then τ |= (¬ψ) iff τ 6|= ψ iff ψ(τ) = 0 iff ¬(ψ(τ)) = 1 iff
(¬ψ)(τ) = 1.

2. ϕ = (ψ ∧ θ). Then τ |= (ψ ∧ θ) iff (τ |= ψ and τ |= θ) iff ψ(τ) = 1
and θ(τ) = 1 iff ∧(ψ(τ), θ(τ)) = 1 iff (ψ ∧ θ)(τ) = 1.

3. ϕ = (ψ ∨ θ). Then τ |= (ψ ∨ θ) iff (τ |= ψ or τ |= θ) iff ψ(τ) = 1 or
θ(τ) = 1 iff ∨(ψ(τ), θ(τ)) = 1 iff (ψ ∨ θ)(τ) = 1.

4. ϕ = (ψ → θ). Then τ |= (ψ → θ) iff (τ 6|= ψ or τ |= θ) iff ψ(τ) = 0
or θ(τ) = 1 iff → (ψ(τ), θ(τ)) = 1 iff (ψ → θ)(τ) = 1.
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