Lecture 26

1 Herbrand Universes and Structures

If φ is satisfiable, how can we find a structure A that satisfies φ ? We will use the syntax as our domain.

Consider a vocabulary which contains at least one constant symbol (and without equality).

Definition 1 (Ground Term) A ground term is a term containing no variables.

We can think of a ground term as an "partially evaluated" term in the sense that the variable will be replaced with an object in the domain.

Definition 2 (Herbrand Universe) The Herbrand Universe (denoted H) of a language is the set of ground terms in a language.

Definition 3 (Herbrand Structure) A Herbrand Structure of a formula φ is a structure \mathcal{H} such that $D^{\mathcal{H}}$ is the Herbrand Universe of φ and $f^{\mathcal{H}}([t_1] \dots [t_n]) = [f(t_1 \dots t_n)].$

I.e.,

$$\mathcal{H} = (D^{\mathcal{H}}, P_1^{\mathcal{H}} \dots P_k^{\mathcal{H}}, f_1^{\mathcal{H}} \dots f_\ell^{\mathcal{H}})$$

where $D^{\mathcal{H}}$ is an *Herbrand Universe*. Terms are now both syntax and semantics: $f_i^{\mathcal{H}}("t_1", \ldots, "t_n") = "f_i(t_1, \ldots, t_n)".$

Definition 4 (Herbrand Model) An Herbrand Model \mathcal{H} of a sentence φ is an Herbrand structure that satisfies φ .

Theorem 1 (Herbrand's Theorem) A universal sentence φ without identity is satisfiable iff it is satisfiable in a Herbrand model. Alternatively: If φ is a satisfiable sentence, then it has an Herbrand model.

Conclusion Every Herbrand model is countable. In particular, if it is infinite it is countably infinite.

Corollary 1 (Löwenheim-Skolem Theorem) A first order sentence φ is satisfiable iff it is satisfiable in a countable structure. Alternatively: If φ is satisfiable, then it has a countable model.

Corollary 2 To check if φ is valid, we only have to consider countable structures.

Corollary 3 There is no first order sentence to express the notion "There are uncountably many elements."

2 Validity is Recursively Enumerable

Definition 5 Let φ be a universal sentence $\forall x_1 \dots \forall x_n \theta$. Then,

 $ground(\varphi) = \{\theta[x_1 \mapsto t_1, \dots, x_n \mapsto t_n] : t_i \in H\}.$

Note that elements of $ground(\varphi)$ have no variables.

Lemma 1 Let A be an Herbrand structure. Then $A \models \varphi$ iff $A \models ground(\varphi)$.

Proof. $A \models \varphi$ iff for all $t_1, \ldots, t_k \in H$ we have $A, [x_1 \mapsto t_1, \ldots, x_k \mapsto t_k] \models \varphi$. By a simple inductive argument on the structure of φ we can show that $A, [x_1 \mapsto t_1, \ldots, x_k \mapsto t_k] \models \varphi$ iff $A \models \varphi[x_1 \mapsto t_1, \ldots, x_n \mapsto t_n]$.

Definition 6 For every k-ary relation symbol P and $t_1, \ldots, t_k \in H$, we introduce a proposition P_{t_1,\ldots,t_k} .

This gives us the following result:

Lemma 2 ground(φ) is satisfiable in an Herbrand structure iff ground(φ)[$p(t_1, \ldots, t_k) \mapsto p_{t_1,\ldots,t_k}$ is satisfiable.

For example, $p(f(c)) \wedge \neg p(g(d))$ becomes $P_{f(c)} \wedge \neg P_{g(d)}$.

Thus, φ is unsatisfiable iff $ground(\varphi)$ is unsatisfiable. It follows from the Compactness Theorem that some finite subset of $ground(\varphi)$ is unsatisfiable. In this way, we have reduced a formula in first order logic to one in propositional logic. In conclusion, to determine the unsatisfiability of φ , we enumerate all finite subsets of $ground(\varphi)$ and check for unsatisfiability. Finally, recall that φ is valid iff $\neg \varphi$ is unsatisfiable.

Theorem 2 (Gödel's Completeness Theorem) Validity for first order logic is recursively enumerable.

3 Validity and Satisfiability in the Finite

Now, what about validity over all finite structures. Unfortunately, there we have another negative result.

Definition 7 φ is valid in the finite if $A \models \varphi$ holds whenever A is finite.

Theorem 3 (Trakhtenbrot's Theorem) Validity over finite structures for first-order logic is not recursive.

Definition 8 φ is satisfiable in the finite if there is a finite structure A, such that $A \models \varphi$

What about satisfiability in a finite structure? If the vocabulary is finite, then there are finitely many structures (up to an isomorphism) of a given finite cardinality.

Corollary 4 Satisfiability in some finite structure is recursively enumerable.

Hence, validity over finite structures cannot be recursively enumerable.