Lecture 25

1 Satisfiability

Given a ¢, is it satisfiable? This is a difficult question to answer because even
though the syntax is simple, the sentences can be very complex. Consider the
two sentences:

(V) (Vy) (R(z,y) = (V2)(R(y, 2) = R(z,2)))

(V) (Vy) ((R(z,y) A R(y, 2)) = R(z,2))
Both these sentences define the rule for transitivity. However the second one
is much more readily understood. More examples:

(V) (Vy) (V2) (Yw) Pz, y, 2, w)
defines a complete quaternary relation, while
(Vz)(Jy)(V2) (Fw) P(z,y, 2, w)

defines a two-round game between two players in which the second player always
wins.

Alternation of quantifiers makes it difficult to understand first order sen-
tences. What we need is to somehow control the occurrences of quantifiers in
the sentences we consider. This is done by translating general sentences into
more restricted normal forms, while still preserving satisfiability. This process
is called normalization.

1.1 Normalization of Syntax

Universal sentences are sentences that do not contain any existential quanti-
fiers. We will consider universal sentences with the additional restriction that
all quantifiers occur up front. This is called Skolem normal form. Thus, a sen-
tence is in Skolem normal form if it is of the form (V1) ... (Vz,)0 where 6 is a
quantifier-free formula.

While translating sentences, two kinds of transformations ¢ +— ¢’ are al-
lowed:

1. — is semantics preserving: ¢ =] ¢'. For example, (Vx)(Vy)P(z,y) —
(Vy) (V) Pz, y).
2. Equisatisfiability: ¢ is satisfiable iff ¢’ is satisfiable.

Rule 1 implies rule 2. Rule 2 is applied more often.



2 Transformations

2.1 Removing Identity

We assume the following Theorem (proved in homework). Note that this pre-
serves satisfiability but not logical equivalence, which is more stronger and we
want that for query transformation in case of databases:

Theorem 1 Let ¢ be a sentence in first-order logic with identity, then one can
construct a first-order sentence ¢’ without identity, such that o is satisfiable iff
p is satisfiable.

This was done by replacing any occurrences of (z ~ y) with a predicate
E(z,y) and conjoining at the end the axioms for equivalence relation and con-
gruence:

¢ = ¢~ E(...)] A Azioms(FE)
2.2 Renaming

The first idea that we’ll introduce is that of variable renaming. We will need
the flexibility to rename variables in our transformations. This is accomplished
by replacing free variables with other variables; bound variables need not be
replaced since the truth for the sub-formula where they appear is determined
by the quantifier.

Definition 1 o[z — y] : replace free occurrences of x in ¢ by y.

e Terms.

— Base Case: z[z — y] =y and z[z — y] = z.

— Induction: f(t1,--- ,tg)lxr—y] = ftalzr — y], -, te[z — y])

e Formulas.

(Vu)p ifu=2a
(Vu)(plz — y]) otherwise

Theorem 2 Suppose that y is a "fresh” variable (i.e. does not occur in a

formula). Then (Va)p == (¥)(ele = y]) and (Ga)e == (3y)(ele = 9)).

Proof: By simple induction over the structure of formulas using the definition
of renaming.



2.3 Prenex Normal Form

The second idea that we introduce is that of Prenex Normal Form, which allows
us to transform all formulas to forms where all quantifiers precede a quantifier-
free term.

Definition 2 ¢ is in prenex form (prenex normal form) if it is of the form
(Q1z1) - - - (Qnxy )0 where each @Q; € {V,3} and 6 is a quantifier free formula.

Here again we call (Q121) -+ (Qnzy) the prefiz and 0 the matriz of p.

Our goal now is to convert every formula into prenex normal form.

Theorem 3 Every formula ¢ has a logically equivalent formula ¢’ in prenex
normal form.

Proof: By induction on the length of the formula as usual.

3

. Base case: P(t1,--- ,t;) is already in prenex normal form.

. @is (—0): By LH. there is a quantifier-free ¢ such that 6 == (Q121) - - - (Qumzm ).

Notice that —(Vz)¢ ==| (3z)(—¢). So we push the negation through.

Therefore ¢’ = (Q171) -+ (QmTm )(—?)) where V=3 and I = V.

. @ is (3x)0: Let 0’ be the prenex form of § and rename ¢'[x — '], where

2’ is a variable that does not occur in 1) so that we satisfy the prenex
requirement of all quantified variables being different. Now ¢’ = (32")¢’

. (for simplicity assume only one binary connective A). Assume ¢ = p1 A

. Take @1 to ¢} and ¢y to ) using renaming to make sure that the
quantified variables of ¢} do not occur in ¢4 and vice versa. Let us call
p the quantified prefix of a formula in prenex form. Then ¢} = p16; and
©h = paba. Then ¢ = (p1)(p2)(01 A 02). (In fact we can randomly shuffle
p1 and po in order to get a quantified prefix for ¢').

Skolemization

Skolemization is the process of eliminating existential quantifiers from a formula
in prenex normal form. We say that a formula ¢y is in skolem normal form
if it is of the form (Vy;)...(Vyn)f, where 6 is quantifier-free formula. This
transformation does not preserve semantics but it does preserve satisfiability:
for every formula ¢, there exists a universal sentence py; such that ¢ is satisfiable
iff py is satisfiable. Thus, skolemization is an equisatisfiable transformation. We
begin with a simple case.

Theorem 4 Let ¢ be a first order formula ¢ = (Vz)(Jy)8. Then, there exists
f(x) such that ¢ is satisfiable iff ¢' = (Va)0ly — f(x)] is satisfiable (where y is
free in 0).



Proof.

[=] Assume A |= (Vz) (3y) 6. That is, for all a € D* there exists b € D* such
that A, [z — a,y — b] = 0. Notice that selecting b depends only on the choice
for a. Let f be a function that returns the choice for b, given a.

Let the structure A’ be the result of adding the function f4 to A. We
claim that A" = Vz 6y — f(x)]. In other words, we want to show that for all
a € DA, we have A’ o[z + a] = 0]y — f(z)] where f4(a) is some b such that
A, alx — a,y — b] = 0. Note that b may not be unique, and this proof depends
upon the Axiom of Choice to choose a particular b.

By a simple inductive argument, it can be shown that A’ a[z — a] E Oy —
f(2)] iff A ez — a,y— b = 0.

[<=] Suppose A is a structure such that A,a = Ve 0y — f(x)]. That is, for
all a € DA we have A, afz + a] = 0]y — f(x)]. We need to show that for all
a € DA, there is some b € D4 such that A, afz — a,y — b] |= 6.

Take b = f4(a). We need to prove that A, afz — a,y — fA(a)] = 0 iff
A,alx — a] E 0ly — f(x)]. We can do this by structural induction on a first
order formula.

Hint: use a “Little Lemma” which says that

alz — a,y = b(t) = alz — a)(tly — b))

(Recall that @ is the Term — D mapping.)
O

This transformation can be easily generalized. Suppose ¢ = (V1) ... (Va,)(Ty)o
and let A be a structure such that A |= ¢. Then we know that for every n-tuple
{ar,...,a,) € (DA)™ there exists a b € D4 such that A = 0[a] where the as-
signment o maps x; to a; and y to b. This allows us to construct a table that
for every n-tuple indicates the value of y that satisfies 6. In cases where y could
have more than one value, we simply choose one of them.

Observe that this table maps each n-tuple in D? to a unique element of D4.
Therefore, it defines a function f4(n) on the domain of A. We now define a new
structure A’ which assoiciates the unique symbol f to the function defined above.
Then our transformation replaces every occurrence of y with f(z1,...,z,).



