
Lecture 24

1 Truth and Complexity

Recall that while discussing propositional logic, we were particularly interested
in the complexity of deciding the truth of sentences. The two kinds of questions
were:

1. Given τ, ϕ does τ |= ϕ? — LOGSPACE

2. Given ϕ, is |= ϕ? — co-NP complete

It is natural to consider similar questions for first order logic. We would
like to know how difficult is it, algorithmically, to find out whether a sentence
is valid or whether a given structure satisfies a sentence. We also would like to
know whether such questions can be answered algorithmically.

The analogous questions for first order logic are:

1. Given A,α, ϕ, does A,α |= ϕ? — For a finite A, this is exactly the
quary-evauation problem. We saw that data complexity (fixed query) is
LOGSPACE, while query complexity (fixed database) is PSPACE-complete.

2. Given ϕ, is |= ϕ? — This is undecidable. This result is known as the
Church-Turing Theorem.

What happens if A is infinite in Problem 1 above? As an example, consider
A = (N,+, ∗, exp,=). Then Fermat’s Last Theorem can be expressed as a
sentences ψ and we know (because of Andrew Wiles’ celebrated proof) that
A |= ψ. So if problem 1 above was decidable, the algorithm could be used to
decide Fermat’s Tast Theorem, and for that matter any theorem in number
theory. Thus the decidability of problem 1 has very important consequences for
mathematics. At the turn of the century, it was hoped that this question would
be answered in the affirmative. For this particular choice of infinite structure,
the problem is undecidable. However, in general, the answer depends on the
structure.

• A = (N,+, ∗,=) is undecidable. Even the highly restricted form of ϕ =
(∃xP (x) = 0), where P (x) denotes a polynomial, is undecidable. That
is, there is no algorithm to determine whether a given polynomial has an
integer root.

1



• A = (R,+, ∗, <): decidable. Since Euclidean Geometry can be formulated
over A = (R,+, ∗, <), this means that Euclidean Geometry is decidable.

• A = (N,+, ∗, <): decidable. This is called Presburger’s Arithmetics

2 Undecidability

Consider the two questions:

1. Given a program, does it terminate?

2. Given a program, does it diverge?

There is a difference between the two. Given that a program terminates,
we can observe it terminating (by just running it and waiting). However, if the
program does not terminate, then we can never verify this fact. This immedi-
ately shows that there are different degrees of decidability. We say a problem is
semi-decidable if there is an algorithm for it that always halts on correct inputs.
So semi-decidability has positive witnesses (like NP). This notion is also called
computable enumerability.

So, how we can prove undecidability for logical reasoning? Remember that
if L1 is reducible to L2, and L1 is undecidable, then L2 is undecidable. As in
NP-completeness, we need the “first” undecidable problem. Such a problem is
the Halting problem, and it is proved by the diagonalizing method.

3 Simple Programming Language

Consider the Simple Programming Language–SPL, having the following instruc-
tions

1. Assignments: x = x+ 1, and x = x− 1

2. Branching: goto line l

3. Conditional branching: If x = 0, then goto line

4. Termination: stop

We also call this a counter machine (CM), because it essentially counts up or
down using one or more variables. The decision problem for a CM is: Starting
at statement 0, with all variables initialized to 0, will the machine reach a
statement k? We denote the decision problem for a CM with two variables as
2CM. The Halting problem for 2CM is undecidable.

Consider Si(t1, t2) to mean that the machine is in line i with t1, t2 in its
counters. We can model the machine using the set of the following axioms:

1. S0(0, 0)

2



2. (∀x)(∀y)(Si(x, y))→ Si+1(x+ 1, y)), if Line i is “x = x+ 1”.

3. (∀x)(∀y)(Si(x+ 1, y))→ Si+1(x, y)), if Line i is “x = x− 1”.

4. (∀x)(∀y)(Si(x, y))→ Sj(x, y) if Line i is “goto j”.

5. (∀x)(∀y)(Si(0, y))→ Sj(0, y) if Line i is “x = 0, goto j”.

Axioms for variable y are similar to those above. Let AxiomsM correspond to
the set of axioms representing the counter machine M .

Lemma 1 The machine M reaches statement k iff

|= (AxiomsM → (∃x(∃y)Sk(x, y)).

To reduce divergence to logical truth, we can make the relations S0, . . . , Sk

ternary relations, where the third argument represents time. The axiom should
express the fact that every machine step takes one time unit. For example:

• (∀x)(∀y)(Si(x, y, t))→ Si+1(x+ 1, y, t+ 1)), if Line i is “x = x+ 1”.

Now we have

Lemma 2 The machine M diverges iff

|= (AxiomsM → (∀t)(∃t′)(t < t′) ∧ (∃x)(∃y)Sk(x, y, t′)).

Note that here we have added to Arithmetics relations S0, . . . , Sk. We can
actually get rid of these relations. This requires encoding sequences of numbers
by numbers.

Theorem 1 Arithmetical truth is not even semidecidable.

This strong negative follows from the fact that if a problem and its com-
plement are both semi-decidable, then they are both decidable. Since both
termination and divergence reduce to arithmetical truth, it cannot be semide-
cidable. This theorem is known as the Incompleteness Theorem, since it implies
that there is no sound and complete proof system for Arithmetics.

In practice, we have termination-checking tools that work quite well in prac-
tice. This is because most real-life programs terminate or diverge for fairly
simply reasons and not for deep mathematical reasons.

See cacm.acm.org/magazines/2011/7/109895-solving-the-unsolvable/fulltext.

3


