
Lecture 22 - FOL Expressiveness - III

1 Definability of a class of structures:
EC and EC∆

Definition 1 (EC). A class C of structures is elementary, denoted EC, if
C = models(ϕ) for some sentence ϕ.

Example 1. We give some examples of EC classes, along with the sentences
that define them.

• The class of undirected graphs:

ϕ1 = (∀x)(¬E(x, x)) ∧ (∀x)(∀y)(E(x, y)↔ E(y, x))

• The class of triangle free undirected graphs:

ϕ2 = ϕ1 ∧ ((∀x)(∀y)(∀z)(E(x, y) ∧ E(y, z)→ ¬E(x, z))

• The class of partial orders:

ϕ3 = ((∀x)(xRx)) ∧ ((∀x)(∀y)(xRy ∧ yRx→ x ≈ y))

∧ ((∀x)(∀y)(∀z)(xRy ∧ yRz → xRz))

• The class of total orders: ϕ4 = ϕ3 ∧ ((∀x)(∀y)(xRy ∨ yRx))

• The class of groups:

ϕ5 = (∀x)(x+ 0 ≈ x ∧ 0 + x ≈ x) ∧ (∀x)(∃y)(x+ y ≈ 0 ∧ y + x ≈ 0)

∧ (∀x)(∀y)(∀z)((x+ y) + z ≈ x+ (y + z))

• The class of abelian groups: ϕ6 = ϕ5 ∧ (∀x)(∀y)(x+ y ≈ y + x)

We note that any mathematical structure that can be defined using a finite
number of axioms (e.g., groups, rings, vector spaces, boolean algebras, topo-
logical spaces) can also be defined using a single sentence, by taking the finite
conjunction of the axioms. This naturally leads us to ask whether we would
gain any expressiveness by allowing infinite sets of sentences to define classes of
structures.
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Definition 2 (EC∆). A class C of structures is extended elementary, denoted
EC∆, if C = models(Φ) for some set of sentences Φ.

Note that, since a finite set of sentences can be written as a single finite con-
junction, the real expressive power of the above definition comes from allowing
infinite number of sentences.

Our first example of an EC∆ class is the class of infinite structures (i.e.,
structures with an infinite domain), denoted CINF.

Theorem 1. The class of infinite structures, CINF, is EC∆.

Proof. Given a natural number n, we can define the property that there are at
least n elements in the domain as a first order sentence as follows:

• at least 2: ψ2 = ∃x1∃x2(x1 6≈ x2)

• at least 3: ψ3 = ∃x1∃x2∃x3(x1 6≈ x2 ∧ x2 6≈ x3 ∧ x3 6≈ x1)

• at least k: ψk = ∃x1 · · · ∃xk
∧
i 6=j(xi 6≈ xj)

Consider the set Σ = {ψn : n ∈ N}. If A is a finite structure, then A 6|= ψk
for k > |DA|. So A 6∈ models(Σ). If A is an infinite structure, then A has
at least n elements for all n ∈ N . So A |= ψn for all n ∈ N , and thus A ∈
models(Σ). Therefore models(Σ) is exactly the class of infinite structures, and
CINF is EC∆.

In order to discuss our second example of a class of structures that is EC∆,
recall the following definition of k-colorable graphs:

Definition 3 (k-colorability). G = {V,E} is k-colorable iff there is a mapping
c : V → {1, . . . , k} such that E(u, v)→ c(u) 6= c(v).

In the remainder of this lecture we will use 2C to denote the class of 2-
colorable graphs. As the following well-known graph-theoretic result shows,
2-colorability has a particularly simple characterization.

Lemma 1. A graph is 2-colorable iff it has no cycle of odd length.

The lemma can be proved easily by induction and we leave the proof as an
exercise. We will use the lemma to construct an infinite set of sentences that
define 2C.

Theorem 2. 2C is EC∆.

Proof. By the lemma above, 2C is the class of graphs which have no cycles of
odd length. So a graph G is in 2C iff for all n ∈ N , G has no cycle of length
2n + 1. Suppose we can represent the property that a graph has no cycle of
length k as a sentence ϕk, for k ∈ N . Then 2C can be defined by the set of
sentences {ϕ2n+1 : n ∈ N}. We now construct such a sentence.
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We first define formulas pn(x, y) recursively as follows:

p1(x, y) = E(x, y) (1)

pn(x, y) = (∃z)(pn−1(x, z) ∧ E(z, y)) (2)

That is, pn(x, y) iff there is a path of length n from vertex x to vertex y.
Likewise, pn(x, x) iff there is a path of length n from vertex x to itself, that is,
x lies on a cycle of length n.

Then the condition that the graph has a cycle of length n can be defined by
the sentence cyclen as follows:

cyclen = (∃x)(pn(x, x))

Finally, the condition that the graph has no odd cycles is defined by the set
of sentences Φ, defined as:

Φ = {¬cycle2n+1 : n ∈ N}

By the lemma, we have 2C = models(Φ) and 2C is EC∆

2 Relating EC and EC∆

Definition 4 (C). Let Σ be a vocabulary and C a class of structures on Σ, then
C is the class of structures that are not in C.

Notice that we don’t want C to just be the unrestricted complement of C,
because it will include things that are not well-formed structures too. So we
take complement with respect to the class of all structures. In the rest of the
lecture when we refer to the complement of C, we will mean C.

We now consider the relation between C and C and between EC and EC∆.

Lemma 2. Properties of EC:

1. If C is EC, then C is EC∆

2. If C is EC, then C is also EC.

Proof. 1. A single sentence is also a singleton set of sentences. If C =
models(ϕ) then C = models({ϕ}), so we have EC ⇒ EC∆.

2. If C is EC, then C = models(ϕ) for some sentence ϕ. Since C and C
are disjoint, for any structure A, we have A ∈ C iff A 6∈ C iff A 6|= ϕ iff
A |= ¬ϕ. Therefore, C = models(¬ϕ) and C is also EC.

Now that we have two notions of classes of structures, elementary and ex-
tended elementary, we wish to determine what distinguishes them. We know
that any structure that is EC is also EC∆, but is the reverse true? Are there
classes that are EC∆ but not EC? And are CINF and 2C in EC? In order
to answer such questions, we turn to a fundamental notion in first order logic:
compactness.
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Definition 5 (Finite Satisfiability). A set Φ of formulas is finitely satisfiable
iff every finite subset Φ′ of Φ is satisfiable.

Theorem 3. Compactness Theorem: A set of formulas Φ is satisfiable iff
it is finitely satisfiable.

We will look at this theorem in more detail in the next lecture. For now, we
take it as given and use it to distinguish EC and EC∆ by showing that CINF

and 2C are not EC.

Theorem 4. The class of infinite structures, CINF, is not EC.

Proof. We prove the statement using contradiction. Suppose that CINF is EC.
Then there is a sentence ϕ such that CINF = models(ϕ). Now, by Theorem 1,
we have CINF = models(Σ), where Σ = {ψn : n ∈ N}. Therefore, models(¬ϕ)∩
models(Σ) = models(¬ϕ) ∩models(ϕ) = ∅, which means the set of sentences
Φ = {¬ϕ} ∪ Σ is unsatisfiable. Then, by the compactness theorem, Φ is not
finitely satisfiable, and so there exists a finite subset Φ′ of Φ such that Φ′ is
not satisfiable. Since Φ′ is finite, there must exist a k ∈ N such that Φ′ ⊆
{¬ϕ} ∪ {ψn : n ≤ k}. Let A be a structure with k + 1 elements in its domain
(for a concrete example, consider the complete graph on k+1 vertices). Then A
is not infinite, so A 6|= ϕ and therefore A |= ¬ϕ. Also A has at least n elements
for all n ≤ k, so A |= ψn for n ≤ k. But then A satisfies each element in Φ′ so
A satisfies Φ′, which contradicts the fact that Φ′ is not satisfiable. Thus, CINF

is not EC.

Corollary 1. The class of finite structures is not EC.

Theorem 5. 2C is not EC.

Proof. The proof is very similar to the proof for CINF. We again use proof
by contradiction (this is a common feature of arguments that use compact-
ness). Suppose that 2C is EC. Then there is some sentence ϕ such that
2C = models(ϕ). Now, by Theorem 2, we also have 2C = models(Φ), where
Φ = {¬cycle2n+1 : n ∈ N}. Then the set Ψ = {¬ϕ} ∪Φ is unsatisfiable, and by
compactness, there is a finite subset Ψ′ of Ψ such that Ψ′ is unsatisfiable. Since
Ψ′ is finite, there exists k ∈ N such that Ψ′ ⊆ {¬ϕ} ∪ {¬cycle2n+1 : n ≤ k}.
Then a graph which is a simple cycle of length 2k + 3 satisfies Ψ′, which con-
tradicts the unsatisfiability of Ψ′. Therefore, 2C is not EC.

So EC∆ is strictly more powerful than EC. Earlier we saw that EC is closed
under complementation, that is, C is EC iff C is EC. What can we say about
C when C is EC∆?

Definition 6 (co-EC∆). A class C of structures is co-EC∆ if C is EC∆.

Example 2. The class of finite structures is co-EC∆, because the class of
infinite structures, CINF, is EC∆. Similarly, the class of graphs that are not
2-colorable is co-EC∆, because 2C is EC∆.

4



P/NP

P
?
⊂ NP

NP
?

6= co−NP
NP ∩ co−NP ?

= P

Table 1: P vs NP

recursive/RE
R ⊂ RE

RE 6= co−RE
RE ∩ co−RE = R

Table 2: R vs RE

We can use analogies from previously studied topics to obtain a better grasp
on the relationship between EC, EC∆ and co-EC∆. Let us compare EC/EC∆

with P/NP and R/RE. We know little about the relationship between P and
NP , except that P ⊆ NP . For example, we don’t know if P equals NP , or if
NP equals co − NP . This is depicted in Table 2. In contrast to this state of
affairs, we have a much better understanding of the relationship between R and
RE. Recall that RE is the set of recursively enumerable languages (also called
semi-decidable or semi-computable), and R is the set of recursive languages (also
called decidable or computable). A language is in RE is there is some turing
machine that accepts it in finite time. A language is in co-RE if there is some
turing machine that rejects it in finite time. A language is in R if there is some
turing machine that accepts or rejects it in finite time. From the definitions, it
is clear that RE ∩ co−RE = Recursive. The situation is shown in Table 2.

Turning our focus back to EC and EC∆, we ask whether our situation is
analogous to P/NP or R/RE. We recall that we already have the answer to
some of the analogous questions. We know that EC ⊆ ECδ, but the equality
does not hold because there are classes in EC∆ which are not EC. The questions
that we need to answer are: Is EC∆ ∩ co−EC∆ = EC? If EC∆ 6= co−EC∆ ?
It turns out that EC/EC∆ relationship is analogous to R/RE and the answer
to both these questions is yes.

Theorem 6. EC∆ ∩ co-EC∆ = EC

Proof. We first prove the easy direction: Let C be EC. Then C is also EC. So
C is EC∆, and therefore, C is co-EC∆. Thus C is in EC∆ ∩ co-EC∆.

Now we prove the harder direction: Let C be EC∆ and C also be co-EC∆.
This means that C is EC∆. Thus, there exist sets of sentences, Φ and Ψ, such
that C = models(Φ) and C = models(Ψ). Since no structure belongs to both
C and C, therefore Φ ∪Ψ is unsatisfiable. Then, by the compactness theorem,
there exist finite Φ′ ⊆ Φ and finite Ψ′ ⊆ Ψ such that Φ′ ∪Ψ′ is unsatisfiable.
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EC/EC∆

EC ⊂ EC∆

EC∆ 6= co− EC∆

EC∆ ∩ co− EC∆ = EC

Table 3: EC vs EC∆

Let C ′ = models(Φ′). Since Φ′ ⊆ Φ, C ⊆ C ′ (remember that the smaller set
of formulas is less restrictive, therefore it has more models). Suppose C 6= C ′,
and let A ∈ C ′ − C. Then A ∈ C ′ and A ∈ C. This implies that A ∈
models(Φ′)∩models(Ψ) = models(Φ′∪Ψ), which means that A satisfies Φ′∪Ψ.
Thus A satisfies Φ′ ∪Ψ′, which contradicts the unsatisfiability of Φ′ ∪Ψ′.

Therefore, we must have C = C ′ = models(Φ′). Since Φ′ is finite, we can
construct a single sentence ϕ which is the conjunction of the elements of Φ′.
Then models(ϕ) = models(Φ′) = C, and therefore C is EC.

Corollary 2. EC∆ 6= co-EC∆.

Corollary 3. If C is not EC and C is EC∆, then C is not EC∆.

The above corollary allows us to prove that something is not EC∆.

Example 3. The class of finite structures is not EC∆. This is because CINF is
EC∆ but is not EC. Similarly, the class of graphs that are not 2-colorable is
not EC∆.

Review: Given a class of structures, C, how do we place it within the
EC/EC∆ hierarchy?

• To show C is EC: Define a single sentence (or finite set of sentences) ϕ
and show C = models(ϕ).

• To show C is EC∆: Define a set of sentences Φ and show C = models(Φ).

• To show C is not EC: Use compactness.

• To show C is not EC∆: Show that C is EC∆ and C is not EC.

Note that this is not an exhaustive approach. For example, if both C and
C are not EC∆, then this method will not work. The class of connected graphs
is an example of such a class. We will look at this example in the next lecture,
when we discuss compactness.
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