
Lecture 2: Parsing Propositional Formulas

1 Review of Syntax

Our alphabet of symbols consists of:

• PROP, a set of atomic propositions

• ¬, a unary connective, and {∧,∨,→,↔}, a set of binary connectives.

• ‘(’ and ‘)’, left and right parenthesis.

Any string built from these symbols is called an expression. E.g., ‘)p → ∨q’ is
an expression. Formulas are expressions with a specific structure. We define
FORM, the set of all formulas in two different but equivalent ways.

1.1 Definition of FORM

Given a set PROP of propositions, we define the set FORM to be the smallest
set satisfying the following two properties.

Basis: PROP ⊆ FORM, and

Closure: ϕ,ψ ∈ FORM implies (¬ϕ) ∈ FORM and (ϕ ◦ ψ) ∈ FORM for any
binary connective ◦.

Alternatively, we can define FORM using induction as follows:

FORM0 = PROP

and, for each i ≥ 0,

FORMi+1 = FORMi ∪ {(¬ϕ), (ϕ ◦ ψ) | ϕ,ψ ∈ FORMi}.

We set

FORM′ =
∞⋃

i=0

FORMi,

which is equivalent to FORM (see notes from previous lecture).

Lemma 1. FORM = FORM′.
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2 Parsing and Unique Readability

Consider the formula ((p → q) → ((q → r) → (p → r))). If you are given an
expression, how can you tell if it is valid? Parsing lets us examine an expression
to determine validity. The following will help us formalize this problem.

Definition 1. Formulas are either atomic or composite.

• The set of atomic formulas = Prop.

• For a composite formula (¬ϕ)

¬ is the primary connective

ϕ is the immediate sub-formula

• For a composite formula (ϕ ◦ ψ)

◦ is the primary connective

ϕ,ψ are immediate sub-formulas

We would like to show that our language is not ambiguous, i.e. that there
is only one way to read a formula in Form.

Theorem 1. Unique Readability Every composite formula has a unique pri-
mary connective and well-defined immediate sub-formulas.

To prove this, we first need the following definition:

Definition 2 (Prefix). An expression α is a prefix of an expression β if there
exists an expression γ such that β = αγ. α is a strict prefix if γ 6= ε. α is a
nonempty prefix if α 6= ε.

Proof of Unique Readability: We prove this using structural induction.

Basis: ϕ is an atomic proposition. Since atomic propositions are uniquely read-
able, this statement is trivially true.

Inductive Step: We must consider two cases.

1. Suppose ϕ is (¬θ).

• ϕ is not atomic

• Suppose ϕ is also (¬θ′). It follows that θ = θ′, by string matching.
So θ is unique.

• ϕ is also (α ◦ β). So α, which is a formula, must start with ¬. This
is impossible, because a formula is either atomic or starts with (.

2. Suppose ϕ is (α ◦ β).

• ϕ is not atomic
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• ϕ is not (¬β), because the formula α cannot start with ¬.

• Suppose ϕ is also (α′ ◦′ β′). Then

– either α = α′, ◦ = ◦′ and β = β′

– or α is a strict prefix of α′, or α′ is a strict prefix of α. If we could
show that this situation is impossible, then our proof would be
complete.

Let’s attempt to prove the following lemma directly:

Lemma 2. Prefix Lemma A strict prefix θ of a formula ϕ is not a formula.

Proof. We use structural induction
Basis: ϕ is atomic. This is trivially true because the only strict prefix of an

atomic proposition is the empty string ε, which is not a formula.
Inductive step:

• ϕ is (¬ψ).

θ is ε, which is not a formula.

θ is (, which is not a formula..

θ is (¬, which is not a formula.

θ is (¬ψ′ where ψ′ is a strict, nonempty prefix of ϕ. We are stuck
here! We need to distinguish a prefix of a formula from a formula.

The straightforward approach failed in this case. The problem was that the
statement we were trying to prove using induction was too weak. An induc-
tion proof depends critically on using the induction hypothesis in proving the
inductive step, and the hypothesis is simply a limited version of the original
statement we are trying to prove. So sometimes a stronger statement is easier
to prove, because it makes the induction hypothesis more powerful.

We thus attempt another proof. Before we proceed, we need a few more
definitions:

Definition 3. Length and Parenthesis Counting
The length of an expression α, denoted length(α), is the number of letters in
the expression. The number of left parenthesis ‘(’ that occur in α is denoted by
`(α), and the number of right parenthesis ‘)’ is denoted by r(α).

The length of a formula is the same as its length as an expression, but it can
also be defined inductively as follows:

• length(p) = 1, where p ∈ PROP.

• length((¬ϕ)) = 3 + length(ϕ)

• length((ϕ ◦ ψ)) = 3 + length(ϕ) + length(ψ)
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Lemma 3. If ϕ a formula then `(ϕ) = r(ϕ).

Proof. By induction.
Base case: ϕ ∈ PROP. Then `(ϕ) = r(ϕ) = 0.
Inductive step:

1. ϕ is (¬θ). Then, by IH, `(ϕ) = 1 + `(θ) = 1 + r(θ) = r(ϕ).

2. ϕ is (θ ◦ψ). Then, by IH, `(ϕ) = 1+ `(θ)+ `(ψ) = 1+ r(θ)+ r(ψ) = r(ϕ).

Next, we’ll show that if you stop reading a formula too early, you end up
with too many ‘(’s. The number of parenthesis is a distinguishing characteristic
of formulas.

Lemma 4. If θ is a nonempty strict prefix of a formula ϕ, then `(θ) > r(θ).

Proof. By induction.
Basis: ϕ = p, where p ∈ PROP. Then ε and p are the only prefixes of ϕ.

Since no nonempty strict prefix exists, the statement is trivially true.
Inductive step:

1. ϕ is (¬ψ).

(a) θ is ‘(’. The statement is obviously true.

(b) θ is ‘(¬’. The statement is obviously true.

(c) θ is ‘(¬ψ1’ where ψ1 is a strict prefix of formula ψ. Then, by IH,
`(θ) = 1 + `(ψ1) > 1 + r(ψ1) > r(ψ1) = r(θ).

(d) θ is ‘(¬ψ’. Then, by Lemma 3, `(θ) = 1 + `(ψ) = 1 + r(ψ) > r(ψ) =
r(θ).

2. ϕ is (α ◦ β).

(a) θ = ‘(’. The statement is obviously true.

(b) θ = ‘(α1’, where α1 is a strict non-empty prefix of α. Then, by IH,
`(θ) = 1 + `(α1) > 1 + r(α1) > r(α1) = r(θ).

(c) θ = ‘(α’. Then, by Lemma 3, `(θ) = 1+ `(α) = 1+r(α) = 1+r(θ) >
r(θ).

(d) θ = ‘(α◦’. The proof is same as the previous case.

(e) θ = ‘(α ◦ β1’, where β1 is a strict non-empty prefix of β. Then, by
IH and Lemma 3, `(θ) = 1 + `(α) + `(β1) = 1 + r(α) + `(β1) >
1 + r(α) + r(β1) = 1 + r(θ) > r(θ).

(f) θ = ‘(α ◦ β’. Then, by Lemma 3, `(θ) = 1 + `(α) + `(β) = 1 + r(α) +
r(β) = 1 + r(θ) > r(θ).
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We now have the tools to prove the Prefix Lemma directly.

Proof of Prefix Lemma: Let θ be a strict prefix of formula ϕ. Then, by
Lemma 4, `(θ) > r(θ). If θ is itself a formula, then, by Lemma 3, we get
`(θ) = r(θ), which is a contradiction. Therefore θ cannot be a formula.

This completes the proof of unique readability.
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