
Lecture 19: The Logic of Circuits, II

1 Review: Sequential Circuits

A sequential circuit is an implementation of a transducer in terms of Boolean
elements.

Definition 1. A sequential circuit is a tuple C = 〈I,O,R,Out, Trans, Start〉,
where:

• I is a finite set of Boolean input signals,

• O is a finite set of Boolean output signals

• R is a finite set of Boolean registers,

• Trans : 2I × 2R → 2R is the transition function,

• Out : 2R → 2O is the output function

• Start ∈ 2R is the starting state

The corresponding transducer then is TC = 〈2I , 2O, 2R, Start, T rans, Out〉.
Note that we can describe Trans (transition function) as a sequence of func-

tions Transi ∈ 2I × 2R → {0, 1}. Each such function is the transition function
for one register. Similarly, we can describe Out as a sequence of functions
Outi ∈ 2I × 2R → {0, 1}.

We now want to model sequential circuits as relational models. The first step
to modelling sequential circuits as relational structures is to pick the domain
and vocabulary. Here we choose to pick our domain to be the set of states, that
is D = 2I × 2R. We also define the vocabulary: I,R,O as unary relations (for
i ∈ I, i(x) = true if high or false if low). For the behavior of the circuits, use
a binary translation which is the transition relation: E(2)

Ac = (2R × 2I , EA, iA1 , . . . , r1
A, . . . , o1

A, . . . , )
EA((r, i), (r′, i

′
)) ↔ Trans(i, r) = r′

ij
A(r, i) ↔ ij = 1

rj
A(r, i) ↔ rj = 1

oj
A(r, i) ↔ out(i, r)|j = 1

1



2 Properties

Now that we have a mathematical model, we want to describe designer intent
as formal requirements. The most common requirement we have is mutual ex-
clusion, e.g., do not allow two processes to write to the same register at the
same time). This is a safety property, which says that “bad things should not
happen”. For example, we can assert: rj and rk cannot be high at the same
time, which leads us to write:

(∀x)[¬(rj(x) ∧ rk(x))]

However, this is not correct as the universal quantifier ranges over too many
sates. We say that (ik, rk) is reachable if it is reachable from an Initial state.
Then we can write:

(∀x)[reachable(x) → ¬(rj(x) ∧ rk(x))]

However, reachable is not included in our vocabulary, so we need to express
reachability in first-order logic. As we shall see, however, reachability is not
expressible in first-order logic. So this way of modeling circuits is not conducive
to expressing properties of computation of circuits.

3 Traces

Instead of modeling circuits as relational circuits, we can model traces.

Definition 2. A trace of a sequential circuit C = 〈I, O, R,Out, Trans, Start〉
is a sequence (ī0, r̄0, ō0)(ī1, r̄1, ō1), ldots, (īk, r̄k, ōk) of elements in 2I × 2R × 2O

such that:

1. Initiation: r̄0 = start (Circuit starts properly)

2. Conseqution: r̄j+1 = Trans(̄ij , r̄j) (Circuit transitions property)

3. Output: ōj = Out(̄ij , r̄j) (Circuit outputs properly)

We now model traces by relational structures. Again we use I, R,O as unary
relation symbols, but instead of using a transition relation E, we use < to denote
the passage of time. A trace structure is then a relational structure:

A = (N,<A, iA1 , . . . , r1
A, . . . , o1

A, . . . , ).

where <A is the standard order on the natural numbers, and the other unary
relations are arbitrary. Such a structure describe an arbitrary trace.

We can now describe properties of traces. For example, we can assert: rj

and rk cannot be high at the same time, which we express by:

(∀x)[¬(rj(x) ∧ rk(x))]

2



This is now correct, since we are talking about all points in the e, not all states
of a cicruit.

Consider the property: r1 must toggle in every cycle. We express it using
the formula:

(∀x)[rj(x) ↔ ¬(rj(x + 1))]

Here we used x + 1 as an abbreviation. Instead of saying y = x + 1, we write
(y > x) ∧ (∀z)(¬(y > z ∧ z > x).

Consider the following property: rj being high designates a request, which
must be granted in the future, designated by rk being high.

(∀x)[rj(x) → (∃y)(y > x ∧ rk(y))]

Such a property is called a liveness property, which says that “good things must
happen”.

4 Decision Problems

Reasoning about traces raises two problems:

1. Satisfiability: Given a formula ϕ over traces, is it satisfiabile?

2. Model Checking: Given a sequential circuit C and formula ϕ over
traces, does C satisfy ϕ? That is, does Traces(C) ⊆ models(ϕ) hold?

Both problems are decidable in NonelementaryTime, which is TIME(f(n, n)),
where f(0, n) = n, and fi+1(n) = 2f(i,n). This function describes an unbounded
tower of exponentials, which grows faster than every bounded tower of expo-
nential. This is both an upper bound and a lower bound for this problem. So
this problem is decidable, but with a horrible time bound. We must remem-
ber, however, that these are worst-case complexity bounds, which may be too
pessimistic.

3


