
Lecture 18: The Logic of Circuits - I

1 Reachability and Expressibility

Imagine a dedicated traveler wants to ask the Travelocity database if it’s possible
to travel from Houston to Timbuktu. This is a reachability query on a graph.

Given a Graph G = (V,E) we define paths and reachability as follows:

Definition 1. A path from u ∈ V to v ∈ V is a sequence u0, . . . , uk of k ≥ 0
nodes such that u0 = u, uk = v, and (ui, ui+1) ∈ E for 0 ≤ i ≤ k − 1.

Definition 2. A vertex x is reachable from a vertex y if there exists a path
from x to y. We write reach(x, y).

We would like to express reach(x, y) in first-order logic. Consider:

• Reach0(x, y) = E(x, y)

• Reachi+1(x, y) = (∃z)(E(x, z) ∧Reachi(z, y))

So we can define the query Reachi(x, y) for all i ≥ 0, but can we define it
without fixing i? This requires us to study the expressive power of first-order
logic. In fact, we will show that reachability is not expressible in first-order
logic.

2 Transducers and Circuits

Logic has emerged as an important field because of its great modelling power.
We now see one example: modelling sequential circuit. First, we define what it
is:

2.1 Transducers

If we bound the amount of memory Turing machines have (no infinite tape), and
focus on interaction, we get the universal model for interactive computation.

Definition 3. A transducer is a tuple T = 〈Σ,∆, S, s0, ρ, α〉, where:

• Σ is a finite input alphabet,

• ∆ is a finite output alphabet,

1



• S is a finite state set,

• s0 ∈ S is a start state,

• ρ : S × Σ → S is a tarnsition function, and

• α : S → ∆ is an output function.

When given an infinite input stream a0, a1, . . ., the transducer produces an
infinite run s0, s1, . . ., where si+1 = ρ(si, ai), and an infinite output stream
c0, c1, . . ., where ci = α(si).

A transducer can be viewed as a generalization of a DFA (deterministic
finite automaton). A DFA T = 〈Σ, S, s0, ρ, F 〉 can be viewed as a trransducer
where the output alphabet is ∆ = {0, 1}, and the output function is simply the
characteristic function of F .

2.2 Sequential Circuits

A sequential circuit is an implementation of a transducer in terms of Boolean
elements.

Definition 4. A sequential circuit is a tuple C = 〈I,O,R,Out, Trans, Start〉,
where:

• I is a finite set of Boolean input signals,

• O is a finite set of Boolean output signals

• R is a finite set of Boolean registers,

• Trans : 2I × 2R → 2R is the transition function,

• Out : 2R → 2O is the output function

• Start ∈ 2R is the starting state

The corresponding transducer then is TC = 〈2I , 2O, 2R, Start, T rans, Out〉.
Note that we can describe Trans (transition function) as a sequence of func-

tions Transi ∈ 2I × 2R → {0, 1}. Each such function is the transition function
for one register. Similarly, we can describe Out as a sequence of functions
Outi ∈ 2I × 2R → {0, 1}.

We now want to model sequential circuits as relational models. The first step
to modelling sequential circuits as relational structures is to pick the domain
and vocabulary. Here we choose to pick our domain to be the set of states, that
is D = 2I × 2R. We also define the vocabulary: I,R,O as unary relations (for
i ∈ I, i(x) = true if high or false if low). For the behavior of the state, define
a binary translation which is a transition relation: E(x)

2



Ac = (2R × 2I , EA, iA1 , . . . , r1
A, . . . , o1

A, . . . , )
EA((r, i), (r′, i

′
)) ↔ Trans(i, r) = r′

ij
A(r, i) ↔ ij = 1

rj
A(r, i) ↔ rj = 1

oj
A(r, i) ↔ out(i, r)|j = 1

3


