
Lecture 17: Relational Queries

1 Introduction

In last lecture we discussed how important is abstraction for computer science.
Also we spent some time talking about How modern day relational databases
has been modelled on relations and formulas .

1. Relations are Tables.

2. Formulas are queries .

3. If ϕ is unsat, then ϕ(A) = ∅.

2 Query Evaluation

We saw early in the course that there was a distinction between syntax and the
world, and that |= is the connection between the two. It is interesting that this
distinction was actually made late in the study of logic. The idea is attributed
to Tarski who was a famous 20th century logician. We have seen the semantics
of |= and how it is evaluated. Now we turn to the task of defining what it means
to evaluate a query.

A = (R,<,= 0,+, ∗) is infinite so it cannot be a database. In fact, a database
is a finite relational structure. Now that we know how we can write queries, we
should focus on finding efficient ways to ’execute’ the queries. This is referred
to as the query evaluation problem.

Definition 1 (Query Evaluation Problem) Given A and ϕ, compute ϕ(A).

Recall that ϕ(A) = {〈a1, ..., ak〉 | A,< a1, . . . , ak >|= ϕ}). Instead, we can
ask: given A, α, and ϕ, does A,α |= ϕ ? After we have a way to answer this,
then we can enumerate over all α to evaluate our query.

If we want to enumerate all α’s there are DFvars(ϕ) different assignments to
check. So, here is an algorithm:

Truth(A,α, ϕ)
Case
ϕ is p(x1, . . . , xk) : return (α(x1), . . . , α(xk)) ∈ pA

ϕ is ¬ψ : return ¬Truth(A,α,ψ)
ϕ is θ ◦ ψ : return ◦(Truth(A,α,θ),Truth(A,α,ψ))

1

ϕ is (∃x)ψ :
B := false
do for a ∈ D

B := B∨Truth(A,α[x 7→ a],ψ)
od
return B

ϕ is (∀x)ψ :
B := true
do for a ∈ D

B := B∧Truth(A,α[x 7→ a],ψ)
od
return B

Notice that the last case for Truth() is not really necessary, since we can ac-
tually rewrite the formula by (∃x)ϕ |==| ¬(∀x)(¬ϕ) and (∀x)ϕ |==| ¬(∃x)(¬ϕ)

Theorem 1 A,α |= ϕ iff Truth(A,α, ϕ) = 1.

This can be easily proved by the semantic definition of the formula.
Now, what is the complexity of Truth() in terms of its inputs, i.e. in terms

of |A|+ |α|+ |ϕ|?
The definition is by induction on the syntax of the formula. None of the

cases generate many more recursions, except for the ϕ = (∀x)ψ and ϕ = (∃x)ψ
cases, which actually include nested loops. So, the worst-case possible formula is
∀x1∃x2∀x3∃x4...∀xn−1∃xnp(x1, x2, x3, ..., xn). This is O(|A|#vars). Therefore,
the time complexity is (|A|+ |α|+ |ϕ|)|ϕ|, which is exponential in |ϕ|. The space
complexity is |ϕ| ∗ (|ϕ| ∗ log(|A|)), which is polynomial in ϕ, and logarithmic in
A. So, this is still in PSPACE.

Now is this good news or bad news? The answer is that it depends on your
perspective. Notice that the complexity depends differently on ϕ and on A. The
idea is to analyze the complexity while one of the values constant. We can think
of the query as a fixed size and the database variable. This would correspond
to running the same query on data that is constantly updating. We can also
hold the database to a fixed size and vary the size of the query. This would
correspond to keeping the data the same and varying the query. We examine
these possibilities below.

Recall that P ⊆ NP ⊆ PSPACE. This problem is PSPACE − complete.
However, if we consider this problem in terms of different parts of the input, we
get different complexities:

• Complexity of {〈A,α〉|A,α |= ϕ}. So, this is the complexity if we keep ϕ
fixed. This is called data complexity, and it is PTIME, and LOGSPACE.

• Complexity of {〈α, ϕ〉|A,α |= ϕ}. This is the complexity of we keep the
structure fixed. This is the case with databases, since the database uses
a specific structure, so this is called query complexity. This is EXPTIME,
and PSPACE. Actually, this is also PSPACE − complete.

2

• Complexity of {〈A,α, ϕ〉|A,α |= ϕ}. The combined complexity makes this
PSPACE − complete.

Usage Scenario:

1. Fixed query: varying data like share cost/stock market. In this case
complexity is polynomial.

2. Varying query:fixed data like census , Complexity may be exponential.

1: Data complexity ∈ logspace

2: Fixed data : query complexity ∈ PSPACE − COMPLETE
P ⊆ NP ⊆ PSPACE

1. Query complexity is exponentially higher then data complexity.

2. Query answering can be hard .

3 Classifying formulas and queries

1. ϕ - satisfiable: for some A and α we have A,α |= ϕ

2. ϕ - unsatisfiable: for all A and α we have A,α 6|= ϕ

3. ϕ - valid: for all A and α we have A,α |= ϕ

1. ϕ(A) 6= ∅ for some A – ϕ satisfiable

2. ϕ(A) = ∅ for all A – ϕ unsatisfiable

3. ϕ(A) = (DA)k – ϕ valid

4. We call a query interesting if it is satisfiable but not valid.

1. ϕ ≡ ψ: A,α |= ϕ iff A,α |= ψ for all A,α

2. ϕ(A) = ψ(A) for all A iff ϕ ≡ ψ

Note: Satisfiability, validity, and equivalence for first-order logic are undecid-
able.

3

