COMP 409, Lecture 13: Proof Complexity

1 Proof Complexity

We discussed earlier what a proof system is.

Definition 1 A proof system for a nonempty set T of theorems is a computable
onto function f: A* —T.

Intuitively, f checks an alleged proof. It either outputs the theorem that the
proof does prove, or a default element ¢, € T'.
Next we added a requirement of feasibility:

Definition 2 A feasible proof system for a nonempty set T of theorems is a
polytime onto function f: A* — T.

This requires that the checking be done in polytime.

If we have such a function f, then the proof of a theorem t is the word
w € A* such that f(w) = t. In general, there is no a priori bound on the length
of the proof of a theorem. This motivates the following definition:

Definition 3 A polybounded proof system for a nonempty set T of theorems is
a polytime onto function f: A* — T where there is a polynomial p such that if
t € T then there is w € ASPU) where f(w) = t.

Some reflection shows that this definition is essentially equivalent to the
definition of a language being in NP.

Theorem 1 T has a polybounded proof system iff T is in NP.
Corollary 1 VALID has a polybounded proof system iff NP=co-NP.

Because we do not believe that NP=co-NP, we do not believe that VALID has
a polybounded proof system. Can we prove it? Note that proving that NP! =co-
NP implies that P#NP, so proving that VALID does not a polybounded proof
system is expected to be difficult.

Earlier we also formalized a more specific notion of a “step-by-step” proofs,
with respect to a deductive system I, consisting of inference rules.

Definition 4 A T-deduction is a sequence @1, ..., o, such that for every o;,
there are i1 < ig < ... <ip_1 < i such that (pi; i, 0i,_, i) €T.
Deductions(T') = {(¢1, ..., on) | (¥1,..s0n) is a T — deduction}



Now we define polynomial feasibility of T' as follows.
Definition 5 T is polynomially feasible if Deductions(T') € PTIME.

How long is the proof going to be? We want reasonably short proofs.

Definition 6 I' is a polynomially bounded system iff there is polynomial p s.t.
whenever Fr ¢, there is a deduction @1, ..., pn F @ in T, such that

o n < p(lel)
o |oil < p(lel)

The definition says that a proof is polynomially bounded iff it has polynomial
lines and each line has polynomial length.
We list the following desiderata for I':

1. Soundness and completeness
2. Polynomial feasibility

3. Polynomial boundedness

Theorem 2 IfT is a sound and complete deductive system that is polynomially
feasible and bounded, VALID € NP.

The intuition behind this theorem is as follows. Suppose we want to know
if = ¢ is a tautology. | ¢ iff Fr ¢ means validity is in NP and therefore NP
= co-NP. This is because of the relatively short proof. NP = co-NP is widely
believed not to be the case.

Corollary 2 We don’t think we can find I', that is sound, complete, polynomi-
ally feasible and bounded.

Resolution is sound and complete, but it is not polynomial bounded. Recall
that, in Resolution Theorem Proving, we iteratively construct increasingly larger
sets of formulas until a contradiction is reached.

Co = @

Cr = Ry (Co)
Cy = RP2 (Ol)
C, = R, (Ch_q)

While each set C; is only quadratically bigger than C;_1, the overall growth
can be exponential. Put otherwise, the length of a resolution refutation can be



exponential. We now focus on the length of the refutations. We will give an
example formula whose refutation is exponential.

Recall the Pigeon-Hole Principle: If we have f : {1,...,n} — {1,...,n — 1},
then for some 1 < i < j < n we have f(i) = f(j). It can be written as:
RCA{l,...,n} x{1,...,n — 1}, for every pigeon i there is some hole k such that
R(i, k). There exists 1 <i < j <mand 1<k <n—1, such that both R(i, k)
and R(j, k) hold.

We formulate this (for a fixed n € N) in propositional logic. To do so, we
will use the following atomic propositions, for each i, j such that 1 <¢ < j < n:

Py 4 R, j)

PHP,

/\ \/ P | — \/ \/ (Pir A ij)

1<i<n 1<k<n-—1 1<i<j<n 1<k<n

So, this formula is valid iff the Pigeon-Hole Principle (for a fixed n) holds.

Theorem 3 (Haken, 1975) FEvery resolution refutation of ~PH P, has length
25Hm),

So, Resolution Theorem Proving is not polynomially-bounded: there is no
polynomial function of the length of a theorem that places an upper bound on
the length of the smallest proof of that theorem.

Conceivably, resolution have long refutations because it is such a weak sys-
tem. So an active research area is establishing lower bounds for more powerful
proof systems.



