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Abstract. Mapping intra-cellular signaling networks is a critical step in
developing an understanding of and treatments for many devastating dis-
eases. The predominant ways of discovering pathways in these networks
are knockout and pharmacological inhibition experiments. However, ex-
perimental evidence for new pathways can be difficult to explain within
existing maps of signaling networks.

In this paper, we present a novel computational method that integrates
pharmacological intervention experiments with protein interaction data
in order to predict new signaling pathways that explain unexpected ex-
perimental results. Biologists can use these hypotheses to design experi-
ments to further elucidate underlying signaling mechanisms or to directly
augment an existing signaling network model.

When applied to experimental results from human breast cancer cells
targeting the epidermal growth factor receptor (EGFR) network, our
method proposes several new, biologically-viable pathways that explain
the evidence for a new signaling pathway. These results demonstrate that
the method has potential for aiding biologists in generating hypothetical
pathways to explain experimental findings.

Our method is implemented as part of the PathwayOracle toolkit and is
available from the authors upon request.

1 Introduction

Altered cellular signaling networks can give rise to the oncogenic properties of
cancer cells [8], increase a person’s susceptibility to heart disease [6], and are
responsible for many other devastating diseases [8,3]. As a result, major efforts
are currently underway to establish high-resolution maps of signaling networks
for various disease-causing cells. These can be used to inform the development
of diagnostic methods and pharmacological treatments.

In the laboratory, targeted manipulation experiments either using knockouts
(i.e., siRNA or genetic knockout organisms) or pharmacological agents are a
primary method for uncovering new connectivity or parts of a signaling network.
The goal of such experiments is to generate results that cannot be explained using
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existing signaling pathway maps or models. These results are important because
they signal the discovery of new pathways, but at the same time raise the very
open-ended issue of identifying the cause of the incongruous result.
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Fig. 1. The path from experiment to new biological insights. Informative knockout or
inhibition results are those that cannot be explained by the model. Once such a result
has been obtained, the biologist must consider the possible causes for the inconsistency.
This paper handles the case of an incomplete signaling model (in the grey box) by
providing a computational method for detecting absent pathways and predicting new
ones.

As shown in Fig. 1, several explanations can account for unexpected results:

1. The model is missing signaling pathways. In this situation, the result is un-
expected because interaction paths exist in the biological signaling network
that are not represented in the model. These missing paths are false negatives
since the model indicates that no such paths exist.

2. The model contains incorrect signaling interactions or pathways. Particularly
when dealing with diseased cells, signaling network models based on different
cell lines can be inaccurate: interactions in one cell line may not exist in the
diseased network under study. Thus, the model contains paths that are false
positives—paths that do not exist in the context of the cell being studied.

3. Biological factors have influenced the result. These can range from technical
challenges such as experimental conditions to issues of great scientific im-
portance such as a lack of specificity in the drug being used to knockout or
inhibit part of the network.

Thus, when faced with an unexpected result from a knockout or inhibition
experiment, the biologist has a large space of potential causes that he or she must



consider. As a result, there is a significant need to develop tools that expedite the
process of generating hypotheses to explain unexpected targeted manipulation
experimental results.

In this paper, we present a novel computational method for identifying and
handling knockout or inhibition results that belong to the first class discussed
above—those that cannot be explained because the model is missing pathways.
Our method (1) identifies results for which the model network is missing paths
and (2) generates biologically-viable pathways that can explain the result. These
generated pathways become hypotheses that the biologist can then use as a basis
for further experiments or as paths that are added to the existing network model.
Prior work in this area has focused on related problems in the transcriptional
network domain [20,21]. However, to our knowledge, this method is the first
to use knockout or inhibition experiments to guide the prediction of missing
pathways in the cellular signaling network.

In order to generate new pathways, our approach integrates knockout or
inhibition result data with protein interaction data—both sources of information
about interactions that occur in signaling networks.

In a knockout or inhibition experiment, one or more compounds in the sig-
naling network are rendered inactive through chemical or genetic means. In the
resulting network, any role that these compounds played are eliminated. The
modified network is stimulated and set into motion. At various time intervals,
the concentration and activity of various proteins within the modified network
are compared to those in the original network. A statistically significant change
in the concentration or activity of a given protein in the modified network in-
dicates that this protein and the inhibition target must interact. A reasonable
representation of such a positive result is the knowledge that a protein X in-
teracts with another protein Y. Since this captures the interaction information
supplied by the experiment, this is the representation we use throughout this
paper.

Protein interaction data, commonly stored in protein-protein interaction databases,
is another major source of interaction information. This data is primarily gener-
ated by high-throughput experimental methods that identify protein pairs that
are likely to interact. Unlike the results of knockout or inhibition experiments,
all interactions returned by these high-throughput methods are putative. As a
result, the false positive rate in protein interaction databases has been shown
to be high [15]. Various methods, ranging from literature search to comparisons
across organisms, have been proposed for assessing the likelihood of an interac-
tion being correct [9,4, 2,18, 16]. When a protein interaction database is coupled
with an interaction confidence measure, it becomes a useful source of information
on interactions that occur within the cell.

Since signaling networks ultimately are massive webs of directed protein in-
teractions, one might expect that new signaling topology could be uncovered by
dissecting these protein interaction databases. Yeang et al. considered this ques-
tion with respect to transcriptional networks [20]. In a more recent study, Scott
et al. [15] considered this problem with respect to signaling networks and found



that highly biologically-relevant topologies could be extracted from these inter-
action networks. In their analysis, they recovered the MAP kinase and ubiquitin-
ligation signaling pathways from a computational search of the MIPS interaction
database [12].

Our approach uses this idea of discovering topological structure within a pro-
tein interaction dataset by considering it within the context of a single knockout
or inhibition experiment. The computational technique searches a protein inter-
action network for biologically-viable pathways that account for the results of
the experiment. We make the assumption that interactions with a high likeli-
hood of being correct are biologically-viable. Extending this assumption to the
pathway-level, we consider a pathway to be biologically-viable if the product of
the likelihoods of each interaction in the pathway is high. Therefore, our method
searches a protein interaction network for the best supported interaction paths
that connect X and Y.

In order to test our method, we experimentally and computationally deter-
mined the effect of pharmacological inhibitors on changes in signaling network
function in human breast cancer cells. Two human breast cancer cell lines were
treated with three different pharmacological inhibitors targeting different signal-
ing molecules. We found an unexpected inhibitory interaction between MEK1
and c-Src. Given this result, our method generates excellent candidate pathways
that explain the observed knockout or inhibition pattern and are consistent
with other biologically known properties of the EGFR network. This result can
be taken as evidence that our method’s generated pathways can be considered
reasonable hypotheses for the true signaling network topology underlying exper-
imental results.

In order to make our method available for use, we have implemented it as a
Java tool and bundled it with the PathwayOracle software package. Pathway-
Oracle is available upon request from the authors.

2 Results and Discussion

2.1 Experimental Results

In order to understand how targeted manipulations alter different nodes in the
signaling network we used inhibitors to specific molecules and measured changes
in several proteins within the network using protein microarrays. Combining
targeted pharmacological manipulations with protein array technology allows us
to simultaneously measure changes in a large number of signaling molecules very
rapidly. Using this method we treated breast cancer calls with three inhibitors
of the signaling network.

The inhibitors used were Iressa (EGFR kinase inhibitor), perifosine (AKT
inhibitor) and PD98059 (MEK inhibitor). Iressa is currently used in clinical
treatment of patients, and AKT and MEK inhibitors are in pre-clinical and
early phase clinical trials [7].

Analysis of the data from the two cell lines at two different time points in
which post stimulation revealed changes in signaling within the network (see
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Fig. 2. Experimental microarray data from BT549 and MDA-MB-231 breast tumor
cells treated with the MEK1 inhibitor PD98059 shows that the level of phopho c-Src
is increased in BT549 cells but not in MDA-231 cells upon EGF stimulation. The two
graphs show the phospho c-Src levels in the two cell lines after normalization for protein
loading, the first bar corresponds to control cells and the second bar corresponds to
cells treated with the MEK1 inhibitor for 30 minutes.

Figure 2). We observed the expected changes (not shown), i.e. when the MEK
inhibitor was used EGF did not stimulate MAPK1,2 but the activation of AKT
was not altered. When Iressa was used to inhibit EGFR the activation of MAPK
1,2, was blocked in response to EGF in Ras wild type cells but not in cells with a
Ras activation mutation. Similarly Iressa blocked AKT activation of PTEN wild
type cells but not in PTEN deletion cells. Having observed expected outcomes
we were very intrigued by results that were unexpected. For example we found
that in BT549 breast tumor cells PD 98059 elevated c-Src basal phosphorylation
levels in EGF stimulated cells. However, this was not the case in MDA-MB-231
cells, where there was no increase in c-Src phosphorylation when compared to
control. This data suggests that by inhibiting MEK1 we are also increasing c-Src.
There could be two explanations for this result, the first being that MEK and
c-Src are connected through a signaling pathway in BT549 cells, or the second
being that the MEK inhibitor has non-specific activity on c-Src. However, based
on the result in MDA-231 cells where there is no increase in c-Src it does not
appear that there is a non-specific drug effect on c-Src. From these results we
checked our existing signaling network model to find connectivity between MEK1
and c-Src, and found no existing pathway.

2.2 Pathway Prediction Results

From our experimental data we observe that inhibiting MEK1 results in a 90%
decrease in phosphorylation of c-Src in BT549 cells. In order to understand how
inhibiting MEK1 could also inhibit c¢-Src we performed a PubMed search and
found no previously published work describing MEK1 activation of c-Src. There
were several publications showing that c-Src could activate MEK1, but not vice
versa.



Ordinarily when faced with this scenario of having an unexplained experi-
mental outcome and no previously described pathway from MEK1 to c-Src, the
biological investigator is faced with hours of literature searches in an attempt
to find pair-wise interactions that can connect MEK1 to c-Src. These searches
frequently result in several possible best guess pathways that the investigator
would then have to check individually. This method of going down a laundry
list of pathways to test is very inefficient and uses valuable time, manpower and
resources. Computational methods to identify possible pathways focus this effort
and allow the investigator to logically rank and test the pathways based on the
modeling prediction. We have developed such a method and show here the use
of our model and the use of iterative cycling between experiments and modeling
to rapidly advance our understanding of signaling networks.
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Fig. 3. A graphical representation of the paths predicted leading from MEK1 to c-Src.
Each interaction (edges) is labeled by the % of paths that it appeared in. Since this is
the percent of predicted paths that pass through a given interaction, this number can
be taken as an estimate of the importance of the interaction among all the interactions
in the prediction. Note that this number should not be confused with the confidence
that the interaction exists—all interactions depicted in this graph had support values
greater than 99.9% as reported by the STRING database.

The computational model predicts several pathways from MEK1 to c-Src
based on protein-protein interaction data (see Fig. 3). Some of the biologically-
relevant characteristics of the predictions include the prediction that all paths
include SEK1 and p38 which have been shown to be downstream from MEK1
[17,10]. The fact that our method identified this biologically correct connectivity
increases the confidence in the predicted pathways. Downstream from p38 there
is a predicted bifurcation of signal with seven possible paths. However, these



seven paths converge onto three molecules c-CBL, Caveolinl, and FADK1 which
are directly upstream from c-Src.

This modeling result is very interesting because it offers testable hypotheses
to direct the experimental validation of the predictions. The first experiment is
to knock out SEK1 or p38, anticipating that this would completely knock out
connectivity between MEK1 and c-Src. Experiments to inhibit the connectivity
in this pathway would include using siRNA to knock out expression of SEK1
and p38, and chemical intervention experiment by using a pharmacological in-
hibitor of p38. If we experimentally observe that, when p38 is inhibited, there is
no change in connectivity between MEK1 and c-Src this would direct us back to
make changes in the model. If we observe only partial loss of connectivity when
p38 is blocked, this would imply additional pathways not utilizing p38, and this
again would direct us back to refine our model. Additionally, knocking out or
pharmacologically inhibiting ¢-CBL, Caveolinl, or FADK1 should give one of
three results complete, partial, or no loss of connectivity between MEK and c-
Src. Based on the results from these experiments we would be able to determine
novel connectivity between MEK1 and c-Src in a quick and directed manner.
Therefore, by this modeling-based hypothesis-driven method, coupled with tar-
geted experimental manipulations, we can rapidly identify novel connectivity
between signaling molecules and pathways.

3 Materials and Methods

3.1 Knockout Experiment Design

In order to quantify changes in several nodes of the signaling network in parallel
we used the reverse phase protein micro-array technology. Using this proteomic
tool we were able to measure changes in the activity state as well as total levels
of expressed proteins. The method is described below.

Protein Lysate Micro Array. Arrays were prepared using cells lysed on ice
with microarray lysis buffer (50 mM Hepes, 150 mM NaCl, 1mM EGTA, 10 mM
Sodium Pyrophosphate, pH 7.4, 100 nM NaF, 1.5 mM MgCl2, 10% glycerol,
1% Triton X-100 plus protease inhibitors; aprotinin, bestatin, leupeptin, E-64,
and pepstatin A). Cell lysates were centrifuged at 15,000 g for 10 minutes at
4C. Supernatant was collected and quantified using using a protein-assay sys-
tem (Bio-Rad, Hercules, CA), with BSA as a standard. Using a GeneTac G3
DNA arrayer (Genomic Solutions, Ann Arbor, MI), six two-fold serial dilutions
of cell lysates are arrayed on multiple nitrocellulose-coated glass slides (FAST
Slides, Whatman Schleicher & Schuell, Keene, N.H). Arrays were produced in
batches of 10. Printed slides were stored in dessicant at -20C. Antibodies were
screened for specificity by Western blotting. An antibody was accepted only if
it produced a single predominant band at the expected molecular weight. Each
array was incubated with specific primary antibody, which was detected by us-
ing the catalyzed signal amplification (CSA) system (DAKO). Briefly, each slide
was washed in a mild stripping solution of Re- Blot Plus (Chemicon Interna-
tional, Temecula, CA) then blocked with I- block (Tropix, Bedford, MA) for



at least 30 minutes. Following the DAKO universal staining system, slides were
then incubated with hydrogen peroxide, followed by Avidin for 5 minutes, and
Biotin for 5 minutes. Slides were incubated with primary and secondary an-
tibodies then incubated with streptavidin-peroxidase for 15 minutes, biotinyl
tyramide (for amplification) for 15 minutes, and 3,3-diaminobenzidine tetrahy-
drochloride chromogen for 5 minutes. Between steps, the slide was washed with
TBS-T buffer. Each slide was probed with validated antibodies under optimal
blocking and binding conditions. Loading is determined by comparing phos-
phorylated and non-phosphorylated antibodies as well as by assessing control
antibodies to prevalent and stable proteins. Six serial dilutions of each sample
facilitate quantification and ensure that any slide can be assessed with different
antibodies. Multiple controls are placed on each slide to facilitate quantification
and robustness of the assay. Data are collected and analyzed by background
correction and spot intensity using Image J. Protein phosphorylation levels are
expressed as a ratio to equivalent total proteins. Fold increases in spot intensities
were calculated against non-stimulated control samples. The following antibod-
ies were used: EGFR, c-Src, Stat3, MAPK1,2, AKT, S6K, MEK1, NFkB, BAD,
p38 MAPK, phosho c¢-Src, phospho Stat3, phospho AKT, phospho S6K, phospho
MEK1, phospho NFkB, phospho BAD, phospho p38 MAPK.

3.2 Predicting Novel Pathways based on Knockout Results

After completing the set of knockout experiments, we conducted a novel com-
putational analysis to predict new pathways needed to explain the experimental
results. This analysis consisted of two main stages:

1. Identifying inconsistent results: in this step we identified any individual
knockout experiments that could not be explained by the model network.
We call these results inconsistent.

2. Constructing candidate pathways: for each inconsistent result, we performed
an exhaustive search of protein interaction data for hypothetical pathways
that could explain the result and augment the existing incomplete model.

It is important to recall from Fig. 1 that there are multiple explanations for
inconsistent results—only one of which is the incompleteness of the model. To be
concrete, the experimental results presented in this paper can also be explained
by undesired drug interactions with proteins other than MEK1. Our analysis
finds several very viable pathways that may be missing from this network, making
our approach valuable to the experimental biologist. However, in a complete
analysis other sources of error must be taken into account. We identify these
other sources of inconsistency as directions for future work, focusing in this
paper only on the prediction of new pathways to handle the case of an incomplete
model.

In the following sections we provide a detailed description of the steps item-
ized above.



Identifying Inconsistent Results In order to determine which experimental
results were unexpected, it was necessary to select a model signaling network that
contained the complete set of known and relevant interactions. Since all of our
experiments involved proteins embedded in the EGFR network, we used a model
based on an extensive literature review of interactions in this network [11]. We
stored the model signaling network as a pathway graph model [14]. In this repre-
sentation, each protein/protein-state pair (e.g. AKT-inactive, AKT-active, and
EGFR-phosphorylated) and each interaction is represented by a node. Directed
edges connect protein/state pairs to interactions (reactions) they participate in
and connect reactions to protein/state pairs that are produced as a result of the
interaction. This representation explicitly depicts all experimentally derived and
published paths through the signaling network—allowing extensive analysis of
the connectivity within the network.

Recall that a knockout or inhibition result can indicate that a signaling path-
way exists between two proteins (as was the case with MEK! and c¢-Src in the
experiments described above). When a knockout or inhibition experiment yields
such a result for proteins X and Y, but no chain of directed interactions exists in
the model network between X and Y, we call this result inconsistent—implying
that the model is not capable of explaining the result and requires the addition
of a new pathway.

In order to identify inconsistent results, we first selected only those results
which indicated the presence of a signaling pathway between two proteins. For
each of these results, we used the constrained downstream algorithm [14] to
enumerate all paths between the two proteins in the model. This algorithm
performs an exhaustive search of a pathway graph model for all paths connecting
one set of proteins to another. In this algorithm, the first protein is considered
the source, the second protein is considered the sink, and all paths found are
directed from the sources to sinks, as they would occur in the signaling network.

For the experiments we considered for this paper, the downstream algorithm
reported paths for all results except MEK1 to c-Src. The absence of any path
from MEK1 to c¢-Srcindicates that the model cannot explain the inhibitory result
observed between these two proteins. As a result, this result was identified as an
inconsistent result.

Constructing Candidate Pathways In this step, given an inconsistent result,
we seek a set of candidate pathways, any of which can explain the result observed.
For the inconsistent result supporting a pathway between proteins X and Y, we
know that the model has insufficient interactions to connect them. Therefore, we
must look elsewhere in order to find biologically-relevant interactions to connect
these two proteins.

Protein interaction databases are, effectively, massive repositories of putative
protein interactions. Despite the fact that many of the interactions may not, in
reality, occur, these databases provide a good source of interactions to use when
assembling hypothetical pathways.



One issue that must be addressed is the fact that many studies have shown
the interactions in these databases to be of varying quality [4,2]. Since we seek
biologically-likely pathways which are, by definition, composed of biologically
likely interactions, we must have some way of evaluating the confidence of any
given interaction in the database. Significant work has been done into the prob-
lem of assigning confidence to interactions [9, 4, 2, 18, 16]. In this study, we made
use of the STRING database [19] which provides interactions with confidence
scores. However, using other interaction databases and other confidence scor-
ing schemes are equally valid approaches and, depending on the interactions in
the database and how confidence is estimated, may produce somewhat different
results from ours.

Once a protein interaction database and confidence scoring scheme have been
selected, a protein interaction network can be constructed. This is a data struc-
ture that combines the interactions in the database with the scoring scheme. In
this network, a node is a protein, an edge e = (u,v) is an undirected interac-
tion between proteins u and v. Each edge, e = (u,v) is assigned a weight equal
to its log-likelihood score: weight(e) = —log(c(e)), where c(e) is the confidence
assigned to interaction e by the scoring scheme.

When constructed as described, this network has the special property that
the weight of path (uq,us,...,u,) within this network has the following corre-
spondence to its total support:

n—1 n—1
w((ui uit1)) = —109(1_[ c(ui, uiv1)))-

Since the function —log(z) approaches 0 as x — 1, the sum on the left will
be smallest when the individual path edges have confidence scores closest to 1.
Therefore, the shortest (lightest) path in the network between nodes X and Y
corresponds to the most biologically-likely pathway connecting the two proteins
represented by nodes X and Y.

Since all paths within some confidence threshold probably correspond to
some biologically-likely pathway, we choose to search for the set of k-shortest
paths—where k is a parameter indicating how many paths we want to retrieve.
Paths should be reported in order of increasing weight so that the kth path is
the longest (least biologically-likely) of the paths returned by the search.

Significant work has been done on the problem of enumerating the k-shortest
paths and efficient algorithms exist for solving it [5,1]. For our purposes in this
project, we use a variant of the k-shortest path problem, called the k-shortest
simple path problem [22,13]. A simple path is one that contains no loops. The
reason for this restriction is that, while feedback loops are quite common in
signaling pathways, we are only interested in the simplest pathways that can
explain the inconsistent results. Under the log-likelihood transformation, edges
with 100% support will have zero weight, creating the possibility of cycles in the
graph. As a result, we choose to discard any short paths that contain loops from
the set of candidate pathways.



In our analysis, we used an implementation of Eppstein’s k-shortest paths
algorithm [5]. Non-simple paths were detected and removed from the output in
order to give a k-shortest simple paths algorithm. We ran the algorithm and
found the 100 shortest simple paths. A detailed analysis of these paths is given
in Section 2.2.

As a final step in identifying the candidate pathways, direction must be
imposed on the paths extracted. The paths extracted from the protein interaction
network are bi-directional since the edges are undirected. For a result in which
a knocking out protein X caused a change in protein Y, the pathway direction is
towards protein Y. In order to model this in the interaction network, we always
search for paths from X to Y and report the the nodes of each path in the order
in which they appear—from first to last.

3.3 The PathwayOracle Tool

In the past ten to fifteen years biologists have uncovered hundreds of interactions
within signaling pathways in biological systems. A challenge given this large
amount of data is to develop novel methods to probe the data and ask questions
that cannot be answered by experimental biology alone. On the other hand it is
also vital to integrate the experimental biology with the computational models
and methods.

In order to address these issues, we have created the PathwayOracle software
package which contains various tools enabling the computational analysis and
extension of experimental results and techniques [14]. The novel approach to
pathway prediction described in this paper is the most recent addition to the
PathwayOracle package. Included with the implementation is the human subset
of the interactions in the STRING database, though other interaction datasets
can be specified.

The entire toolkit is open-source, implemented in Java, and available upon
request from the authors. Additional information about other features and tools
included in the package is available on the website:
http://bioinfo.cs.rice.edu/pathwayoracle.
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