
Reconstructing Evolution of Natural Languages:
Complexity and Parameterized Algorithms�

Iyad A. Kanj1, Luay Nakhleh2, and Ge Xia3

1 School of Computer Science, Telecommunications and Information Systems,
DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604-2301, USA

ikanj@cs.depaul.edu
2 Department of Computer Science, Rice University, 6100 Main St., MS 132 Houston,

TX 77005-1892
nakhleh@cs.rice.edu

3 Department of Computer Science, Lafayette College, Easton, PA 18042, USA
gexia@cs.lafayette.edu

Abstract. In a recent article, Nakhleh, Ringe and Warnow introduced
perfect phylogenetic networks—a model of language evolution where lan-
guages do not evolve via clean speciation—and formulated a set of prob-
lems for their accurate reconstruction. Their new methodology assumes
networks, rather than trees, as the correct model to capture the evolu-
tionary history of natural languages. They proved the NP-hardness of
the problem of testing whether a network is a perfect phylogenetic one
for characters exhibiting at least three states, leaving open the case of
binary characters, and gave a straightforward brute-force parameterized
algorithm for the problem of running time O(3kn), where k is the num-
ber of bidirectional edges in the network and n is its size. In this paper,
we first establish the NP-hardness of the binary case of the problem.
Then we provide a more efficient parameterized algorithm for this case
running in time O(2kn2). The presented algorithm is very simple, and
utilizes some structural results and elegant operations developed in this
paper that can be useful on their own in the design of heuristic algorithms
for the problem. The analysis phase of the algorithm is very elegant us-
ing amortized techniques to show that the upper bound on the running
time of the algorithm is much tighter than the upper bound obtained
under a conservative worst-case scenario assumption. Our results bear
significant impact on reconstructing evolutionary histories of languages–
particularly from phonological and morphological character data, most
of which exhibit at most two states (i.e., are binary), as well as on the
design and analysis of parameterized algorithms.

1 Introduction

Languages differentiate and divide into new languages via a process similar to
how biological species divide into new species: communities separate (typically
� The first author was supported in part by DePaul University Competitive Research

Grant.

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 299–308, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

300 I.A. Kanj, L. Nakhleh, and G. Xia

geographically), the language changes differently in each of the new communi-
ties, and in time people from separate communities can no longer understand
each other. While this is not the only means by which languages change, it is
this process which is referred to when we say, for example, “French and Italian
are both descendants of Latin.” The evolution of related languages is mathemat-
ically modeled as a rooted tree in which internal nodes represent the ancestral
languages and the leaves represent the extant languages.

Reconstructing this process for various language families is a major endeavor
within historical linguistics, but is also of interest to archaeologists, human ge-
neticists, and physical anthropologists, for example, because an accurate recon-
struction of how certain languages evolved can help answer questions about
human migrations, the time that certain artifacts were developed, when ancient
people began to use horses in agriculture, the identity of physically European
mummies found in China, etc. (see in particular [7,13,18]). Various
researchers [2,3,5,14] have noted that if communities are sufficiently separated
after they diverge, then the inference of the phylogeny (i.e., evolutionary tree)
for the languages can be inferred by comparing the characteristics of the lan-
guages (grammatical features, regular sound changes, and cognate classes for
different basic meanings), and searching for “perfect phylogenies.” However, the
problem of determining if a perfect phylogeny exists, and then computing it,
is NP-hard [1]. Consequently, efficient techniques for the inference of evolution-
ary trees for language families were not easily obtained. In the 1990’s, various
fixed-parameter approaches for the perfect phylogeny problem were developed
(although inspired by the biological context rather than the linguistic one). Sub-
sequently, Ringe and Warnow worked together to fully develop the methodology
(character encoding and algorithmic techniques) needed to apply these algo-
rithms to the Indo-European language family.

However, while the methodology seemed very clearly heading in the right di-
rection, and even seemed to potentially answer many of the controversial prob-
lems in Indo-European evolution (see [10,12,14,15,16]), it became necessary to
extend the model to address the problem of how characters evolve when the lan-
guage communities remain in significant contact. To address this issue, Nakhleh
et al. introduced the perfect phylogenetic networks (PPN) model in which lan-
guages do not evolve via a clean speciation process [8,9]. They proved the NP-
hardness of the problem of testing whether a network is a perfect phylogenetic
one for characters exhibiting at least three states, leaving open the case of binary
characters, and gave a straightforward O(3kn) time parameterized algorithm for
the problem [8], where k is the number of bidirectional edges in the network and
n is its size.

In this paper we consider the binary case of the problem. This case is of
prime interest on its own since it models the problem of reconstructing evolu-
tionary histories of languages, particularly from phonological and morphological
character data, most of which exhibit at most two states [6,11,12,14,16,17]. We
first prove the NP-hardness of this problem. Then we present a branch-and-
bound parameterized algorithm that solves the problem in O(2kn2) time. The

Reconstructing Evolution of Natural Languages 301

algorithm employs several interesting structural (network) operations that are
very useful in the design of heuristic algorithms for the problem. When analyzed
using the standard methods for analyzing parameterized branch-and-bound al-
gorithms, and which usually work under a worst-case scenario assumption, the
upper bound obtained on the size of the search tree of the algorithm is O(3k),
matching the upper bound of the trivial brute-force algorithm. This worst-case
analysis for a branch-and-search process is usually very conservative— the worst
cases can appear very rarely in the entire process, while most other cases permit
much better branching and reductions. Instead, we use amortized analysis to
show that “expensive” operations can be balanced by efficient ones, and that
the actual size of the search tree can be upper bounded by O(2k). The running
time of the algorithm becomes O(2kn2). The analysis phase of the algorithm
is very elegant illustrating that parameterized algorithms perform much better
than their claimed upper bounds, and suggesting that the standard approaches
used in analyzing the size of the search tree for parameterized algorithms are
very conservative. Most of the proofs in this paper are omitted for lack of space
and are available in the technical report 05–007 at the following web address:
http://www.cs.depaul.edu/research/technical.asp.

2 Inferring Evolutionary Trees

An evolutionary tree, or phylogeny, for a set L of taxa (i.e., species or languages)
describes the evolution of the taxa in L from their most recent common ancestor.
Each taxon in L corresponds to a leaf in the evolution tree. The Different types
of data can be used as input to methods of tree reconstruction; “qualitative
character” data, which reflect specific observable discrete characteristics of the
taxa under study, are one such type of data. There are several ways of describing
qualitative characters: as partitions of the set of taxa into equivalence classes, or
as functions that map the taxa to the distinct states. Qualitative characters for
languages are grammatical features, unusual sound changes, and cognate classes
for different meanings. The assumption of the historical linguistic methodology
is that these qualitative characters evolve in such a way that there is no back-
mutation (when characters exhibit parallel evolution we can find most of it
and exclude those characters). What this means is that when the state of the
qualitative character changes in the evolutionary history of the set of languages,
it changes to a state which does not exist anywhere else on earth at that time,
nor has it appeared earlier. We now formalize this concept mathematically.

Suppose that T is a rooted tree describing the evolution of a set L of languages.
Therefore the leaves in T are the languages in L. Suppose that a qualitative
character α is defined for each of the languages in L as a function α : L → Z,
where Z denotes the set of integers (i.e. each integer represents a possible state
for α). That is, α is a labeling to the leaves in T . We say a qualitative character
α is compatible (or “convex”) on T if we can extend α to every internal node of
the tree T , thus defining a qualitative character α′, or a labeling to the internal
nodes of T , so that for every state, the nodes in T having that specific state

302 I.A. Kanj, L. Nakhleh, and G. Xia

induce a connected subgraph of T . (In other words, ∀z ∈ Z, the set of nodes
{v ∈ V (T) : α′(v) = z} induces a connected subgraph of T .)

A different way of casting the above problem which is more intuitive is the
following. Given a rooted tree T whose leaves are labeled with integers, decide
if the internal nodes in T can be labeled so that each set of nodes in T with the
same label induces a connected subgraph of T .

Ringe and Warnow postulated that all properly encoded qualitative characters
for the Indo-European data should be compatible on the true tree, if such a tree
existed. Such a tree is called a perfect phylogeny. We have the following definition
and theorem.

Definition 1. Let C be a set of qualitative characters defined on a set L of
languages. A tree T is a perfect phylogeny for C and L if every qualitative
character in C is compatible on T .

Theorem 1. Let T be a phylogenetic tree on a set L of n languages, and as-
sume that each language in L is assigned a state for α. Then we can test the
compatibility of α on T in O(n) time.

The initial analysis of the Indo-European data done by Warnow and Ringe in [16]
demonstrated that the IE linguistic data is, nevertheless, “almost perfect”: they
found a tree on which the proportion of compatible characters to incompatible
characters was enormous. (Even this was quite surprising; the existence of a tree
on which a large proportion of characters is compatible is extremely unlikely in
biological data analysis.) This suggested that the basic approach was a good one
but that the model had to be extended: A tree model is inappropriate and the
evolutionary process is better represented as a “network” [8].

3 Phylogenetic Networks Compatibility: Preliminaries
and Complexity

This model of how languages evolve on networks references an underlying rooted
tree (modeling “genetic descent”) to which bidirectional edges (modeling how
linguistic characters can be transmitted through contact) are added. Therefore,
the underlying tree is rooted, and the edges of that tree can be naturally oriented
from parent to child, whereas the additional edges are by design bidirectional,
since contact between language communities can result in the flow of linguistic
characters in both directions. This model was formalized in [8] as follows.

Definition 2. A phylogenetic network on a set L of languages is a rooted di-
rected graph N = (V, E) with the following properties:

(i) V = L∪I, where I denotes added nodes which represent ancestral languages,
and L denotes the set of leaves of T .

(ii) E can be partitioned between the edges of a tree T = (V, ET), and the set of
“non-tree” edges or bidirectional edges E′ = E−ET . For more convenience
in the notation, we will refer to a bidirectional edge by a b-edge. The edges
in T are oriented from parent to child, and hence T is a directed rooted tree.

Reconstructing Evolution of Natural Languages 303

(iii) N is “weakly acyclic”, i.e., if N contains directed cycles, then those cycles
contain only edges from E′.

(iv) Every internal node in N has at least two children in T .

Properties (iii) and (iv) above will be referred to as the phylogenetic networks
properties.

For a phylogenetic network N , we denote by TN the underlying tree of N . For a
node u ∈ N , we denote by label(u) the label of node u, and by π(u) the parent
of u in TN . If e is a b-edge between two nodes u and v in the network N , then
e has three possible statuses: (1) the edge e can be simply removed denoting
that no transfer took place between the two ancestral languages representing u
and v, (2) e can be directed from u towards v denoting that the transfer was
from the ancestral language representing u to that representing v, or (3) e can
be directed from v towards u denoting that the transfer was from the ancestral
language representing v to that representing u. If e is directed from u towards v,
then the network is transformed as follows. Remove the edge (π(v), v) from N ,
and make u the new parent of v in the resulting network (that is, add the edge
(u, v) as a tree edge to the resulting network). Similarly, if e is directed from
v towards u, then the edge (π(u), u) is removed from N , and the edge (v, u) is
added. Note that if there are t b-edges in N , then the t b-edges induce O(3t)
trees based on 3t different statuses of the t edges. We denote by Γ the set of the
trees induced by the t b-edges in N .

An assignment to the statuses of the edges in a network N whose leaves are
labeled by a character is said to be successful if the character is compatible with
the tree induced by this assignment. A successful labeling for a compatible tree
is a labeling to the nodes of T in which all the nodes with the same label induce
a connected subgraph of T .

Note that the order in which the b-edges that are incident on a certain node
are assigned can potentially make a difference in the resulting tree.

Definition 3. Let N = (V, E) be a phylogenetic network on L and Γ be the set
of trees induced by all the assignments to the b-edges in N . Let C be a set of
characters defined on L, and let c : L → Z be a character in C. Then c is said
to be compatible on N if c is compatible on at least one of the trees in Γ . N
is called a Perfect Phylogenetic Network if all characters in C are compatible
on N .

The Character Compatibility on Phylogenetic Networks problem, de-
noted henceforth by CCPN, was defined as follows [8].

CCPN
Given a phylogenetic network N = (V, E) on a set L, and a set of
characters C defined on L, decide if N is a perfect phylogenetic network.

This problem was shown to be NP-hard [8] for the case where each character
has at least three states. We will consider the case of the CCPN problem in

304 I.A. Kanj, L. Nakhleh, and G. Xia

which each character has exactly two states. This problem is called the Binary

Character Compatibility on Phylogenetic Networks, denoted hence-
forth by BCCPN. This problem is of prime interest on its own in the field of
linguistics (see [6,11,12,14,16,17]).

BCCPN
Given a phylogenetic network N = (V, E) on a set L, and a set of
characters C defined on L such that each character in C has two states
(i.e., binary) decide if N is a perfect phylogenetic network.

Remark 1. Deciding if a network N is perfect phylogenetic on a set of characters
C reduces to deciding if every character c ∈ C is compatible on N . Therefore,
without loss of generality, we will denote by BCCPN the problem of deciding
whether a given binary character c is compatible on N . The mentioning of c
becomes irrelevant in this case, and we will simply say N is compatible to denote
that the implicit (given) character c is compatible on N .

Theorem 2. BCCPN is NP-complete.

Theorem 2 implies that the CCPN problem is NP-complete as well by special-
ization, giving an alternative, yet different, proof to that in [8].

4 A Parameterized Algorithm for BCCPN

A parameterized problem is a set of pairs of the form (x, k) where x is the in-
put instance and k is a positive integer called the parameter. A parameterized
problem is said to be fixed-parameter tractable, if the problem can be solved in
time f(k)|x|c, where f is a computable function of the parameter k, |x| is the
input size, and c is a constant independent of k [4]. The area of parameter-
ized algorithms and complexity was introduced mainly in the work of Downey
and Fellows [4], and is based on the core observation that for many practical
occurrences of intractable problems some parameters remain small, even if the
problem instances are large.

Taking the advantage of the fact the the number of b-edges in the phylo-
genetic network is small [9], the BCCPN problem can be naturally parame-
terized by the number of b-edges, k, in the phylogenetic network. We call this
problem the Parameterized BCCPN problem. It is easy to see that the Pa-

rameterized BCCPN problem can be solved in O(3kn) time, where n is the
number of nodes in the phylogenetic network, by enumerating the status of ev-
ery b-edge in the network, then checking whether the resulting induced tree is
compatible. We will significantly improve on this upper bound next. The algo-
rithm we present is a decision algorithm deciding if the network is compatible
or not.

Assumption I. Let (N, k) be an instance of Parameterized BCCPN. If
there is at most one leaf in N of label 0 (resp. 1), then N is compatible. This

Reconstructing Evolution of Natural Languages 305

is true since if we label all the internal nodes in N with 1 (resp. 0), then every
assignment to the b-edges in N is a successful assignment. Since these particular
cases can be identified in O(n) time, we will assume henceforth that at any stage
of the algorithm, there are at least two leaves of label 0 and at least two leaves
of label 1.

Definition 4. Let N be a phylogenetic network. An internal node s in N is
said to be a splitting node if there exists a successful assignment to the b-edges
in N that results in a compatible tree T , such that there is a valid labeling for
the nodes in T with all the nodes in the subtree rooted at s labeled with the
same label, and all the other nodes in the tree labeled with the other (different)
label.

Definition 5. Let N be a phylogenetic network and suppose that s is a splitting
node in N . Let A be a successful assignment to the b-edges in N , and let T be
the tree induced by A. The assignment A is said to respect the splitting node s,
if there is a valid labeling for the nodes in T with all the nodes in the subtree
rooted at s labeled with the same label, and all the other nodes in the tree labeled
with the other (different) label.

Remark 2. Observe that, if we assume the statements in Assumption I, then
for any compatible phylogenetic network N there is at least one splitting node
in N .

The main algorithm, Phylogenetic Compatibility, which solves the Param-

eterized BCCPN problem is given in Figure 2. The algorithm Phyloge-
netic Compatibility tries every node in N as the splitting node. For each
node selected as the splitting node, it calls the subroutine Is Compatible to
check whether there exists a successful assignment to N that respects the se-
lected splitting node. Thus, the subroutine Is Compatible works under the
assumption that the splitting node is given. The subroutine Is Compatible
utilizes the subroutines Clean, Reduce, and Merge, given in Figure 1. These
subroutines apply some operations to reduce the network N , and also work under
the assumption that the splitting node has been selected.

Proposition 1. Let N be a phylogenetic network such that none of the opera-
tions Reduce, Clean, or Merge is applicable to N . Then there exist two nodes
u and u′ in N such that: (1) label(u) = label(u′), (2) (u, u′) is a b-edge in N ,
and (3) all children of u and u′ are leaves.

We call a pair of nodes {u, u′} satisfying the three conditions in Proposition 1 anice
pair. Proposition 1 establishes the existence of a nice pair in any phylogenetic net-
work N to which none of the operations Reduce, Clean, or Merge is applicable.
Now we are ready to present the main algorithm Phylogenetic Compatibility
which solves the Parameterized BCCPN problem. We will assume that

306 I.A. Kanj, L. Nakhleh, and G. Xia

Clean((u, u′))
Precondition: label(u) �= label(u′) and (u, u′) is a b-edge

1. remove the b-edge (u, u′) from N ;

Reduce(u)
1. if u has two leaf-children with different labels then reject;
2. if all the children of u are leaves and there is no b-edge incident on u then

if u is marked as the splitting node then
if there is a leaf in N that is not a child of u

and of the same label as the children of u then reject;
else accept;

else
remove u and its children and replace them with a leaf l;
label l with the same label as the children of u;
add the tree edge (π(u), l);

3. if u is unlabeled and has a labeled child w (w could be a leaf) with no
b-edge incident on w then

if w is marked as the splitting node then set label(u) = 1 − label(w);
else set label(u) = label(w);

4. if u is labeled and has an unlabeled child w with no incident b-edge then
if w is marked as the splitting node then set label(w) = 1 − label(u);
else set label(w) = label(u);

5. if u is labeled and has at most one leaf-child then
add two leaves as children to u of the same label as u;

6. if u has more than two leaves with the same label then remove all of them
except two;

Merge(〈u, u′〉)
Precondition: label(π(u)) �= label(u) = label(u′) and (u, u′) is a b-edge
1. cut off the tree edge (π(u), u) from N ;
2. remove the b-edge (u, u′);
3. identify the two nodes u and u′ (i.e., merge the two nodes into one

new node);
4. let the new node be w; set label(w) = label(u′) and π(w) = π(u′) (add the

tree edge (π(u′), w));
5. make the children of both u and u′ children of w;
6. shift all the b-edges that are incident on u and u′ to make them incident on

w without changing the other endpoints of the b-edges;
7. if u or u′ is marked as the splitting node then mark the new node w as the

splitting node;

Fig. 1. The subroutine Merge

Assumption I is valid before each operation performed by the algorithm and its
subroutines. The algorithm is given in Figure 2.

Theorem 3. The algorithm Phylogenetic Compatibility is correct.

Reconstructing Evolution of Natural Languages 307

Is Compatible (N , k)
1. if k = 0 and N is not compatible then reject;
2. while Reduce is applicable to a node in N apply it;
3. if any of Clean or Merge is applicable then apply it and go to step 1;
4. let {u, u′} be a nice pair in N ; {∗ assume without loss of generality that

label(u) = label(u′) = 1 ∗}
Case 1. Both π(u) and π(u′) are labeled

remove the b-edge (u, u′);
Case 2. One of π(u) and π(u′) is labeled, say π(u). Branch as follows

first side of the branch: set label(π(u′)) = 1 and remove the
b-edge (u, u′);

second side of the branch: set label(π(u′)) = 0;
Case 3. (Both π(u) and π(u′) are unlabeled.) Branch as follows

first side of the branch: set label(π(u)) = 0;
second side of the branch: set label(π(u′)) = 0;
third side of the branch: set label(π(u)) = label(π(u′)) = 1 and

remove the b-edge (u, u′);

Phylogenetic Compatibility
Input: an instance (N, k) of Parameterized BCCPN where N is a

phylogenetic network and k is a positive integer
Output: yes/no decision based on whether N is compatible or not
1. for every node s in N do

1.1. N ′ = N ;
1.2. mark s as the splitting node in N ′;
1.3. call Is Compatible on (N ′, k);
1.4. if Is Compatible returns yes then return yes;

2. return (no);

Fig. 2. Is Compatible and Phylogenetic Compatibility

5 Analysis of the Algorithm Is Compatible

To analyze the running time of the algorithm Phylogenetic Compatibility,
and since the algorithm Phylogenetic Compatibility ends up calling the sub-
routine Is Compatible O(n) times, it suffices to analyze the running time of
Is Compatible and multiply it by O(n). The subroutine Is Compatible is a
branch-and-bound process, and its execution can be depicted by a search tree.
Therefore, the main step in the analysis is deriving an upper bound on the
number of leaves in the search tree. The branches performed by the subroutine
Is Compatible can be classified into two branches: (1, 1)-branches and (1, 1, 1)-
branches. The latter branch corresponds to an O(3k) upper bound on the size
of the search tree, matching the bound of a trivial brute-force algorithm that
enumerates each of the three statuses of every b-edge. Differing from the com-
mon analysis techniques based on the worst-case scenario, we use a novel way
for analyzing the size of the search tree using amortized techniques, and obtain:

308 I.A. Kanj, L. Nakhleh, and G. Xia

Lemma 1. Let T be the search corresponding to the subroutine Is Compatible
on an instance (N, k). The number of leaves of T is O(2k).

Theorem 4. The Parameterized BCCPN problem can be solved in time
O(2kn2) where n is the number of nodes in the network.

References

1. H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phylogeny.
In Proceedings of ICALP’92, LNCS, pages 273–283. Springer Verlag, 1992.

2. A.J. Dobson. Unrooted trees for numerical taxonomy. Unpublished manuscript.
3. A.J. Dobson. Lexicostatistical grouping. Anthropological Linguistics, 11:216–221,

1969.
4. R. Downey and M. Fellows. Parameterized Complexity. Springer, New York, 1999.
5. H.A. Gleason. Counting and calculating for historical reconstruction. Anthropo-

logical Linguistics, 1:22–32, 1959.
6. Russell D. Gray and Quentin D. Atkinson. Language-tree divergence times support

the anatolian theory of indo-european origin. Nature, 426(6965):435–439, Novem-
ber 2003.

7. J.P. Mallory. In Search of the Indo-Europeans. Thames and Hudson, London, 1989.
8. L. Nakhleh. Phylogenetic Networks. PhD thesis, The University of Texas at Austin,

2004.
9. L. Nakhleh, D. Ringe, and T. Warnow. Perfect phylogenetic networks: A new

methodology for reconstructing the evolutionary history of natural languages.
LANGUAGE, 2005. In press.

10. D. Ringe. Some consequences of a new proposal for subgrouping the IE family.
In B.K. Bergen, M.C. Plauche, and A. Bailey, editors, 24th Annual Meeting of the
Berkeley Linguistics Society, Special Session on Indo-European Subgrouping and
Internal Relations, pages 32–46, 1998.

11. D. Ringe, T. Warnow, and A. Taylor. Indo-European and computational cladistics.
Transactions of the Philological Society, 100(1):59–129, 2002.

12. D. Ringe, T. Warnow, A. Taylor, A. Michailov, and L. Levison. Computational
cladistics and the position of Tocharian. In V. Mair, editor, The Bronze Age and
early Iron Age peoples of Eastern Central Asia, pages 391–414. 1998.

13. R.G. Roberts, R. Jones, and M.A. Smith. Thermoluminescence dating of a 50,000-
year-old human occupation site in Northern Australia. Science, 345:153–156, 1990.

14. A. Taylor, T. Warnow, and D. Ringe. Character-based reconstruction of a linguistic
cladogram. In J.C. Smith and D. Bentley, editors, Historical Linguistics 1995,
Volume I: General issues and non-Germanic languages, pages 393–408. Benjamins,
Amsterdam, 2000.

15. T. Warnow. Mathematical approaches to comparative linguistics. Proc. Natl. Acad.
Sci., 94:6585–6590, 1997.

16. T. Warnow, D. Ringe, and A. Taylor. Reconstructing the evolutionary history of
natural languages. Technical Report 95-16, Institute. for Research in Cognitive
Science, Univ. of Pennsylvania, 1995.

17. T. Warnow, D. Ringe, and A. Taylor. Reconstructing the evolutionary history of
natural languages. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 314–322, 1996.

18. J.P. White and J.F. O’Connell. A Prehistory of Australia, New Guinea, and Sahul.
Academic Press, New York, 1982.

	Introduction
	Inferring Evolutionary Trees
	Phylogenetic Networks Compatibility: Preliminaries and Complexity
	A Parameterized Algorithm for BCCPN
	Analysis of the Algorithm Is_Compatible

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

