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ABSTRACT
Data parallel compilers have long aimed to equal the per-
formance of carefully hand-optimized parallel codes. For
tightly-coupled applications based on line sweeps, this goal
has been particularly elusive. In the Rice dHPF compiler,
we have developed a wide spectrum of optimizations that
enable us to closely approach hand-coded performance for
tightly-coupled line sweep applications including the NAS
SP and BT benchmark codes. From lightly-modified copies
of standard serial versions of these benchmarks, dHPF gen-
erates MPI-based parallel code that is within 4% of the per-
formance of the hand-crafted MPI implementations of these
codes for a 1023 problem size (Class B) on 64 processors. We
describe and quantitatively evaluate the impact of partition-
ing, communication and memory hierarchy optimizations
implemented by dHPF that enable us to approach hand-
coded performance with compiler-generated parallel code.

1. INTRODUCTION
A significant obstacle to the acceptance of data-parallel lan-
guages such as High Performance Fortran [10] has been that
compilers for such languages do not routinely generate code
that delivers performance comparable to that of carefully-
tuned, hand-coded parallel implementations. This has been
especially true for tightly-coupled applications, which re-
quire communication within computational loops over dis-
tributed data dimensions [8]. Loosely synchronous applica-
tions, which only require communication between loop nests,
can achieve good performance without sophisticated opti-
mization. Without precise programmer control over com-
munication and computation or sophisticated compiler op-
timization, it is impossible for programmers using data-
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parallel languages to approach the performance of hand-
coded parallel implementations with any amount of source-
level tuning. Since high performance is the principal moti-
vation for developers of parallel implementations, scientists
have preferred to hand-craft parallel applications using lower
level programming models such as MPI [18], which can be
tuned to deliver the necessary level of performance, despite
the higher programming effort required.

The Rice dHPF compiler project [1, 2, 13] has focused on
developing data-parallel compilation technology to enable
generation of code whose performance is competitive with
hand-coded parallel programs written using lower-level pro-
gramming models. The dHPF compiler supports compila-
tion of applications written in a Fortran 77 style augmented
with HPF data distribution directives. dHPF implements
a broad spectrum of novel data-parallel optimization tech-
niques that enable it to produce high-quality parallel code
for complex applications written in a natural style.

This paper uses the NAS SP and BT computational fluid
dynamics application benchmarks [4] as a basis for a de-
tailed performance study of code generated by dHPF for
tightly-coupled line sweep applications. First, we compare
the performance of several versions of parallel code gener-
ated by dHPF to other compiler-based and hand-coded par-
allelizations. These comparisons show that dHPF generates
parameterized parallel code with scalable performance that
closely approaches that of the hand-coded parallelizations
by NASA. The remainder of the paper focuses on a quanti-
tative evaluation of the performance contribution of dHPF’s
key optimizations. We determine how each key optimization
contributes to the performance of dHPF’s generated code by
comparing overall application performance with and with-
out that optimization.

Section 2 provides some brief background about the dHPF
compiler and the NAS SP and BT benchmarks. Section 3
provides an overall comparison of the performance of dHPF-
generated code against hand-coded and other compiler-based
parallelizations of SP and BT. Section 4 compares the per-
formance impact of several different compiler-based parti-
tioning strategies suitable for SP and BT. Section 5 describes
and evaluates communication optimizations in dHPF. Sec-
tion 6 describes and evaluates an optimization to improve
memory hierarchy utilization for off-processor data. Sec-
tion 7 presents our conclusions and outlines open issues.



2. BACKGROUND
2.1 The dHPF Compiler
The Rice dHPF compiler has several unique features and
capabilities that distinguish it from other HPF compilers.
First, it uses an abstract equational framework that enables
much of its program analysis, optimization and code genera-
tion to be expressed as operations on symbolic sets of integer
tuples [2]. Because of the generality of this formulation, it
has been possible to implement a comprehensive collection
of advanced optimizations that are broadly applicable.

Second, dHPF supports a more general computation par-
titioning model than other HPF compilers. With few ex-
ceptions, HPF compilers use simple variants of the owner-
computes rule [16] to partition computation among proces-
sors: partitioning of the instances for each statement (or
loop iteration [3]) is based on a single (generally affine)
reference. Unlike other compilers, dHPF permits indepen-
dent computation partitionings for each program statement,
where the partitioning for a statement maps computation of
its instances onto the processors that own data accessed by
one (or more) of a set of references. This computation de-
composition model enables dHPF to support sophisticated
partially-replicated partitionings, which have proven crucial
for achieving high performance with the NAS SP and BT
benchmarks as we describe in later sections.

Finally, the dHPF compiler provides novel compiler sup-
port for multipartitioning [6, 7], a family of sophisticated
skewed-cyclic block distributions that were originally devel-
oped for hand-coded parallelization of tightly-coupled multi-
dimensional line-sweep computations [5, 11, 14]. Multiparti-
tioning enables decomposition of arrays of d ≥ 2 dimensions
among a set of processors so that for a line sweep computa-
tion along any dimension of an array, all processors are ac-
tive in each step of the computation, load-balance is nearly
perfect, and only coarse-grain communication is needed. We
have extended HPF’s standard data distribution directives
with a new keyword, MULTI, that specifies a multipartitioned
distribution. The MULTI keyword must be used in at least
two dimensions and our implementation currently only sup-
ports * in other dimensions of a multipartitioned data dis-
tribution.

2.2 NAS SP and BT Benchmark Codes
The NAS SP and BT application benchmarks [4] are tightly-
coupled computational fluid dynamics codes that use line-
sweep computations to perform Alternating Direction Im-
plicit (ADI) integration to solve discretized versions of the
Navier-Stokes equation in three dimensions. SP solves scalar
penta-diagonal systems, while BT solves block-tridiagonal
systems. The codes both perform an iterative computa-
tion. In each time step, the codes have a loosely synchronous
phase followed by tightly-coupled bi-directional sweeps along
each of the three spatial dimensions. These codes have been
widely used to evaluate the performance of parallel systems.
Sophisticated hand-coded parallelizations of these codes de-
veloped by NASA provide a yardstick for evaluating the
quality of code produced by parallelizing compilers.

The NAS 2.3-serial versions of the SP and BT benchmarks
each consists of more than 3500 lines of Fortran 77 sequential
code (including comments). To these, we added HPF data

layout directives which account for 2% of the line count. To
prepare these codes for use with dHPF, we manually inlined
several procedures as we describe below. For SP, we inlined
procedures lhsx and ninvr into the source code for proce-
dure x solve; lhsy and pinvr into y solve; as well as lhsz
and tzetar into z solve. For BT, we inlined lhsx, lhsy,
and lhsz into x solve, y solve, and z solve respectively.
The purpose of this inlining in SP and BT was to enable
the dHPF compiler to globally restructure the local com-
putation of these inlined routines so it could be overlapped
with line-sweep communication. The inlining was necessary
to eliminate a structural difference between the hand-coded
MPI and serial versions that would have required interpro-
cedural loop fusion to achieve automatically. In BT, one
additional small inlining step was needed to expose inter-
procedurally carried dependences in the sweep computation
to avoid having to place communication within the called
routine.

2.3 Experimental Framework
All experiments reported in this paper were performed on
on a dedicated SGI Origin 2000 parallel computer with 128
R10000 250MHz processors. Each processor possesses 4MB
of L2 cache, 32KB of L1 data cache and 32KB of L1 instruc-
tion cache. All Fortran code generated by source-to-source
compilation with dHPF along with the reference hand-coded
versions of the NAS SP and BT benchmarks (version 2.3)
were compiled using SGI MIPSpro compilers and linked with
the SGI MPI native library. Detailed metrics, such as cache
misses and MPI operations were measured using hardware
performance counters under control of SGI’s ssrun utility.
In our experiments, we measured SP and BT executions us-
ing both class A (643) and class B (1023) problem sizes.
To see the impact of individual optimizations on scalability,
we measured appropriate metrics for 16 and 64 processors.
Metrics were collected for executions with only 10% of the
standard number of iterations to keep execution time and
trace file size manageable. This approach helps show differ-
ences in optimization impact for small and large data and
processor sizes.

3. PERFORMANCE COMPARISON
In this section we compare the resulting performance of four
different versions of the NAS SP and BT benchmarks1:

• NAS SP & BT Fortran 77 MPI hand-coded version,
implemented by the NASA Ames Research Laboratory

• NAS SP & BT (multipartitioned) compiled with dHPF
from sequential sources

• NAS SP & BT (2D block) compiled with dHPF from
sequential sources

• NAS SP & BT (1D block, transpose) compiled with
the Portland Group’s pgHPF from their HPF sources

The Portland Group’s (PGI) versions of the NAS SP and
BT benchmarks were obtained directly from the PGI WWW
site [15].

1The source and generated code used for our experiments is
available at www.cs.rice.edu/~dsystem/dhpf/pact2002.
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Figure 1: Parallel efficiency for NAS SP (class ’B’).
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Figure 2: Parallel efficiency for NAS SP (class ’A’).

PGI’s HPF versions of these codes use a 1D BLOCK data
distribution and perform full tranposes of the principal ar-
rays between the sweep phases of the computation. Since
their compiler does not support array redistribution, their
implementation uses two copies of two large 4D arrays, where
the copies are related by a transpose. The PGI versions of
the NAS SP and BT computations were written from scratch
to avoid the limitations of the PGI compiler. A discussion
of this topic can be found elsewhere [1].

We ran these code versions on 1–64 processors for the class
’A’ (643) problem size and 1–81 processors for the larger
class ’B’ (1023) problem size. This range of problem sizes
and processor counts is intended to show the performance
of different variants of the benchmarks for a range of per-
processor data sizes and communication-to-computation ra-
tios.
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Figure 3: Parallel efficiency for NAS BT (class ’B’).
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Figure 4: Parallel efficiency for NAS BT (class ’A’).

Figures 1 and 2 compare the efficiency of four different par-
allelizations of the NAS SP benchmark for the class ’B’ and
’A’ problem sizes respectively. Figures 3 and 4 present the
efficiency comparisons for the NAS BT benchmark’s class
’B’ and ’A’ problem sizes.

For each parallelization ρ, the efficiency metric is computed
as ts

P×tp(P,ρ)
. In this equation, ts is the execution time of the

original sequential version implemented by the NAS group
at the NASA Ames Research Laboratory; P is the number
of processors; tp(P, ρ) is the time for the parallel execution
on P processors using parallelization ρ. Using this met-
ric, perfect speedup would appear as a horizontal line at
efficiency 1.0. We use efficiency rather than speedup or ex-
ecution time as our comparison metric because it enables
us to accurately gauge the relative performance of multiple
versions across the entire range of processor counts.



The graphs show that the efficiency of the hand-coded MPI-
based parallelizations based on a multipartitioned data dis-
tribution is excellent, yielding an average parallel efficiency
of 1.20 for SP class ’A’, 0.94 for SP class ’B’, 0.97 for BT
class ’A’ and 1.02 for BT class ’B’. Thus, the hand-coded
versions achieve nearly linear speedup.

The dHPF-generated multipartitioned code achieves similar
parallel efficiency and near-linear speedup for most processor
counts, demonstrating the effectiveness of our compilation
and optimization technologies. Its average efficiency across
the range of processors is 1.11 for SP class ’A’, 0.99 for SP
class ’B’, 0.94 for BT class ’A’ and 1.04 for BT class ’B’.
The dHPF compiler achieves this level of performance for
code generated for a symbolic number of processors, whereas
the hand-coded MPI implementations have the number of
processors compiled directly into them.

The remaining gaps between the performance of the dHPF-
generated code and that of the hand-coded MPI can be at-
tributed to two factors. First, the dHPF-generated code
has a higher secondary cache miss rate on large numbers of
processors due to interference between code and data in the
unified L2 cache of the Origin 2000. The memory footprint
of dHPF’s generated code is substantially larger than that of
the hand-coded version due to its generality. Second, on 81
processors the class ’B’ benchmarks suffer from load imbal-
ance on tiles along some of the surfaces of multipartitioned
arrays. dHPF uses a fixed block size (namely, d s

t
e, where s

is the extent of the dimension and t is the number of tiles
in that dimension) for tiles along a dimension; using this
scheme, tiles at the rightmost end may have fewer elements.
For the class ’B’ benchmarks on 81 processors, this leads
to partially-imbalanced computation with 8 tiles of size 12
and a tile of size 6 at the right boundary. In contrast, the
tiling used by the hand-coded MPI ensures each processor
has either b s

t
c and d s

t
e elements, which leads to more even

load balance.

The performance of the dHPF-generated 2D block partition-
ing using coarse-grain pipelining (CGP) [1] is respectable,
with an average efficiency of 0.80 for SP class ’A’ and 0.65
for class ’B’. Due to a compiler limitation, the CGP version
of SP uses overlap regions for storing off-processor data; this
places it at a disadvantage with respect to the multiparti-
tioned version, which uses its data directly out of commu-
nication buffers. Even if this limitation were eliminated, it
would not boost the performance to the level achieved by the
multipartitioned codes; we discuss this issue in more detail
in the next section. Due to a limitation in our dependence
analysis, we were not able to obtain results for BT using this
partitioning scheme.

We also compare the efficiency of the version of the NAS
SP and BT benchmarks written by PGI which use 1D block
distributions with transposes between sweep phases. These
codes, compiled with version 2.4 of the pghpf compiler, achieve
an average efficiency of 0.69 for SP class ’A’, 0.53 for SP class
’B’, 0.87 for BT class ’A’ and 0.99 for BT class ’B’. Despite
good average efficiency for BT, Figures 3 and 4 show that
the PGI version has considerably lower scalability than the
dHPF and MPI versions. The full array transposes cause
communication volume proportional to the full 3D array vol-

ume, whereas communication volume for multipartitioning
is proportional to the surface area of the partitioned tiles.

4. DATA PARTITIONING SUPPORT
The previous section showed considerable variations in per-
formance between codes using different partitioning strate-
gies. Here, we quantitatively evaluate the impact of the
partitioning strategy on overall execution time and commu-
nication volume. The data partitioning strategy employed
in a parallel code influences an application’s communication
pattern, communication schedule and communication vol-
ume, as well as its local node behavior. The data partition-
ing choice is a key determinant of an application’s overall
performance.

Here, we use the SP and BT benchmarks to compare the im-
pact of three partitioning choices suitable for tightly-coupled
line sweep applications. Tables 1 and 2 present ratios of ex-
ecution time and communication volume that, respectively,
compare the 2D-block partitioned versions of the codes and
PGI’s 1D-block partitioned versions of the codes with re-
spect to the dHPF multipartitioned versions.

Benchmark 16 proc. 64 proc.

Time SP ’A’ CGP 1.45 1.23
Comm. Vol. SP ’A’ CGP 1.09 1.08
Time SP ’B’ CGP 1.76 1.58
Comm. Vol. SP ’B’ CGP 1.09 1.12

Table 1: 2D-block CGP vs. multipartitioning.

Benchmark 16 proc. 64 proc.

Time SP ’A’ PGI 1.40 1.61
Comm. Vol. SP ’A’ PGI 3.29 3.27
Time SP ’B’ PGI 1.91 1.98
Comm. Vol. SP ’B’ PGI 4.28 3.28
Time BT ’A’ PGI 0.85 1.34
Comm. Vol. BT ’A’ PGI 3.11 3.16
Time BT ’B’ PGI 0.95 1.69
Comm. Vol. BT ’B’ PGI 4.00 3.13

Table 2: 1D-block transpose (PGI) vs. multiparti-
tioning.

From Table 1, we see that the relative increase in commu-
nication volume with respect to multipartitioning is modest
for both problem sizes. The increase in execution time is not
directly proportional to the increase in communication vol-
ume. Previous studies have shown that the principal factor
driving the increase in execution time is that the coarse-
grain pipelining version incurs more serialization [6].

From Table 2, it is clear that the communication volume of
PGI’s 1D-block transpose implementation is a factor of 3–4
larger than that of dHPF’s multipartitioned version. For
smaller numbers of processors, this strategy is reasonably
competitive, but for larger numbers of processors, efficiency
degrades. Without more detailed analysis of their imple-
mentation, the precise reasons for differences in scalability
and performance in response to data and processor scaling
are not clear.



5. COMMUNICATION OPTIMIZATIONS
On modern architectures, achieving high-performance with
a parallel application is only possible if processors commu-
nicate infrequently. The high cost of synchronizing and ex-
changing data drives the need to reduce the number of com-
munications. This is true on NUMA-style distributed shared
memory machines, multicomputers and clusters.

We have designed and implemented a broad range of com-
munication analysis and optimization techniques in the dHPF
compiler. These techniques improve the precision of proces-
sor communication analysis, reduce the frequency of mes-
sages between processors and reduce the volume of data
communicated. We also describe some language extensions
that assist the compiler in generating high performance code.

5.1 HPF/JA-inspired Extensions
The Japanese Association for High Performance Fortran pro-
posed several new HPF directives to enable users to fine-tune
performance by precisely controlling communication place-
ment and providing a limited means for partially replicating
computation. These directives are known as the HPF/JA
extensions [17]. dHPF implements variants of several of the
HPF/JA extensions as we describe below.

To enable an HPF programmer to avoid unnecessary com-
munication that can’t be eliminated automatically by an
HPF compiler without sophisticated analysis, dHPF sup-
ports the HPF/JA LOCAL directive. The LOCAL directive
asserts to the compiler that communication for a set of dis-
tributed arrays (specified as parameters to LOCAL) is not
needed in a particular scope.

Enabling an HPF programmer to partially replicate compu-
tation to reduce communication can be important for high
performance. For this reason, we provide extended support
in dHPF for the ON HOME directive to give users control over
partially replicating computation in shadow regions. This
support was inspired by the HPF/JA ON EXT HOME directive,
but enables more precise replication control. The HPF/JA
ON EXT HOME directive enables computation to be partially-
replicated onto all elements in an array’s shadow regions.
A drawback of the ON EXT HOME is that it can cause com-
putation for elements in an arrays shadow region that are
not needed. To avoid this undesirable effect, we extended
HPF’s ON HOME directive to allow multiple ON HOME refer-
ences to be specified; this provides more precise control over
partial replication than ON EXT HOME and enables the man-
ual specification of partially replicated computation parti-
tionings similar to the ones generated semi-automatically
by the dHPF compiler for localization [1]. Figure 5 shows
how using our extended ON HOME directive enables precise
control over partial replication of computation to selectively
fill a portion of the shadow region (not all of the shadow
region may be needed in a particular step of the computa-
tion). In the figure, each inner square represents an owned
section for a processor; the enclosing squares represent the
processor’s shadow region. Our extended ON HOME directive
enables us to include or exclude the “corners” that would
be filled by the HPF/JA EXT HOME directive.

The HPF/JA REFLECT directive was designed to support
explicit data replication into shadow regions of neighbors.
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Figure 5: Extended ON HOME vs. EXT HOME
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Figure 6: Extended REFLECT directive

REFLECT was designed for use in conjunction with the LOCAL

directive to avoid redundant communication of values. At
the point a REFLECT directive occurs in the code, commu-
nication will be scheduled to fill each processor’s shadow
regions for a distributed array with the latest values from
neighboring processors. In dHPF, we implemented support
for an extension of the REFLECT directive that enables more
precise control over the filling of the shadow regions. Our
extension to REFLECT allows the programmer to specify the
dimensions and the depth of an array’s shadow regions to
fill. By specifying a single dimension and width, we can
selectively fill all or part of the shadow region along that di-
mension. If corner elements are needed, multiple dimensions
can be specified at once in a single entry, which will include
them. Figure 6 shows 2D array a’s left and top shadow re-
gions selectively filled in from the values owned by its left
and top neighbors.

In the following sections, we describe how we use these di-
rectives to tune application performance.

5.2 Partially Replicated Computation
The dHPF compiler’s ability to compute statements on mul-
tiple home locations enables it to partially replicate compu-
tation. This approach, used judiciously, can significantly
reduce communication costs and even, in some cases, elimi-
nate communication altogether for certain arrays.

With dHPF, computation can be partially replicated either
automatically by the compiler [1], or manually using the ex-
tended ON HOME directive. Figure 7 illustrates the technique
for a simple case: computation along the columns has been
replicated on both processors (the owning processor and the
non-owning one) by using an extended computation parti-
tioning as described in section 5.1. The figure shows the
locally-allocated sections of distributed array a for two dif-
ferent processors. The diagonally-striped regions represent
the each processor’s “owned” section; the squares enclosing
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Figure 7: Partially Replicated Computation along a
processor boundary

each owned section represent surrounding shadow regions.
The shaded portion of processor p + 1’s shadow region rep-
resents the replicated computation of one column owned by
processor p, as shown by the shaded portion of processor p’s
owned region.

For SP and BT, partial computation replication enables us
to completely eliminate boundary communication for several
large distributed arrays, without introducing any additional
communication. In the BT benchmark, partial computation
replication eliminates communication for 5D arrays, fjac

and njac in the lhsx, lhsy, and lhsz routines. In both
the BT and SP benchmarks, partial computation replication
completely eliminates communication for six 3D arrays in
the compute rhs routine. The computation of these values
can be replicated at boundaries using a 4D array that must
be communicated anyway. The hand-coded parallelizations
exploit this partial replication of computation too.

5.2.1 Performance Impact
Table 3 compares the relative performance of versions with
and without partial replication of computation. We present
the ratios of execution time and communication volume be-
tween the dHPF-generated multipartitioned versions of SP
and BT without partial computation replication and those
with partial replication. The partially replicated versions
uses both compiler-derived and explicitly-specified replica-
tion using the extended ON HOME directive. The results in
Table 3 show that without partial replication of computa-
tion, both execution time and communication volume in-
crease significantly.

Benchmark 16 proc. 64 proc.

Time SP ’A’ 1.18 1.36
Comm. Vol. SP ’A’ 1.33 1.36
Time SP ’B’ 1.12 1.21
Comm. Vol. SP ’B’ 1.33 1.35
Time BT ’A’ 1.35 1.58
Comm. Vol. BT ’A’ 2.94 2.96
Time BT ’B’ 1.13 1.62
Comm. Vol. BT ’B’ 2.97 2.97

Table 3: Impact of partial computation replication.

This optimization contributes significantly to scalability: its
relative improvement in execution time is more significant
when communication time is not dominated by computa-
tion; for this reason, we observe a higher impact for the

smaller class ’A’ problem size on a large number of pro-
cessors. It is worth noting that our experiments were ex-
ecuted on a tightly-coupled parallel computer with a high-
bandwidth low-latency interconnect; this reduces the per-
formance penalty associated with higher message volume.

5.2.2 Interprocedural Communication Elimination
dHPF’s communication analysis and generation is procedure-
based; dHPF does not currently support interprocedural
communication analysis and placement. However, using our
HPF/JA-inspired directive extensions enables us to elimi-
nate communication of values that we know are available as
a side effect of partially-replicated computation or commu-
nication elsewhere in the program.

We present results on the impact of using the HPF/JA ex-
tended directives to eliminate communication across proce-
dures on the selected benchmarks. Table 4 presents ratios
comparing the execution time and communication volume
of dHPF-generated multipartitioned versions of SP and BT
without using the HPF/JA directives to eliminate commu-
nication across procedures with respect to the versions that
use them. Without the directives, communication volume
and execution time increase 10–20%.

Benchmark 16 proc. 64 proc.

Time SP ’A’ 1.05 1.15
Comm. Vol. SP ’A’ 1.12 1.13
Time SP ’B’ 1.05 1.08
Comm. Vol. SP ’B’ 1.11 1.12
Time BT ’A’ 1.12 1.09
Comm. Vol. BT ’A’ 1.18 1.18
Time BT ’B’ 1.06 1.20
Comm. Vol. BT ’B’ 1.18 1.18

Table 4: Impact of using the HPF/JA extended di-
rectives to eliminate communication interprocedu-
rally.

In SP, we use the LOCAL directive to eliminate communica-
tion for three 3D arrays in the lhsx, lhsy and lhsz routines
for values that are available locally because their compu-
tation was partially replicated in the compute rhs routine
using extended ON HOME.

In BT, we use the LOCAL directive to eliminate communica-
tion for a 3D array u in the lhsx, lhsy and lhsz routines.
The required off-processor values for u had already been
communicated into the shadow region in routine compute rhs

by a REFLECT directive.

The combination of the HPF/JA LOCAL, extended ON HOME

and REFLECT directives obtain all of the benefits of interpro-
cedural communication analysis, without its complexity.

5.3 Coalescing
For best performance, an HPF compiler should minimize the
number and volume of messages. Analyzing and generating
messages for each non-local reference to a distributed array
in isolation produces too many messages and the same values
might be transferred multiple times.



CHPF$ distribute a(*, block), b(*, block) onto P
do j = 2, n

do i = 1, n
a(i, j) = b(i, j - 1) + c ! ON_HOME a(i, j)
a(i, j) = a(i, j) + d + b(i, j - 1) ! ON_HOME a(i, j)

end do
end do

Figure 8: Simple overlapping non-local data refer-
ences.

CHPF$ distribute a(*, block), b(*, block) onto P
do j = 2, n

do i = 1, n - 1, 2
a(i, j) = b(i, j - 1) + c ! ON_HOME a(i, j)
a(i + 1, j) = d + b(i, j) ! ON_HOME a(i + 1, j)

end do
end do

Figure 9: Complex overlapping non-local data ref-
erences

In dHPF, a communication set is initially computed and
placed separately for each individual non-local reference. A
communication set is represented in terms of an ON HOME ref-
erence (corresponding the computation partitioning where
the data is required) and a non-local reference. Both refer-
ences are represented in terms of value numbers that appear
in their subscripts (if any). Whenever possible, dHPF vec-
torizes communication and hoists it out of loops. When
multiple communication events are scheduled at the same
location in the code, dHPF tries to coalesce them to avoid
communicating the same data multiple times.

Consider the code in Figure 8, an HPF compiler should gen-
erate a single message to communicate a single copy of the
off-processor data required by both references to b(i, j -

1). However, detecting when sets of non-local data for mul-
tiple references overlap is not always so simple. References
that are not syntactically equivalent may require identical
or overlapping non-local data. In Figure 9, references b(i,

j - 1) and b(i, j) require identical non-local values and
can be satisfied by a single message. To avoid communicat-
ing duplicate values, overlap between sets of non-local data
required by different loop nests should be considered as well,
as shown in Figure 10.

5.3.1 Normalization
To avoid communicating duplicate values, dHPF uses a nor-
malization scheme as a basis for determining when commu-
nication sets for different references overlap. To compen-
sate for differences in computation partitionings selected for
different statements, normalization rewrites the value num-
bers representing a communication set into a form relative
to its ON HOME reference expressed in a canonical form. In
our discussion of normalization, we refer to the ON HOME ref-
erence for a communication set as the computation partition-
ing (CP) reference and the non-local reference as the data
reference.

dHPF’s value-number based representation for communica-
tion sets has the disadvantage that non-local references that
arise in different loops are incomparable because their sub-
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Coalesce data exchange at this point

Figure 10: Coalescing non-local data across loops.

scripts have different value number representations. To en-
able us to detect when such references may require over-
lapping sets of non-local data, we convert all data and CP
references to use a canonical set of value numbers for the
loop induction variables involved.

We apply our normalization algorithm to communication
sets represented in terms of value numbers based on affine
subscript expressions of the form ai + b, where i is an in-
duction variable, a is a known integer constant and b is a
(possibly symbolic) constant. This restriction comes from
the need to compute a symbolic inverse function for such
expressions2. If this restriction is not met, the communica-
tion set is left in its original form.

A communication set is in normal form if:

• The CP reference is of the form A(i1, i2, i3, ..., in)

• The data reference is of the form A(a1i
′

1 + b1, a2i
′

2 +

b2, a3i
′

3 + b3, ..., ani
′

n + bn)

where A is an n-dimensional array, each ij is an induction

variable or a constant, and each i
′

j corresponds to a unique
ik. We say that a particular subscript expression in the CP
reference is normalized if it is of the form ij , where ij is an
induction variable or a constant.

If a communication set is not in normal form but meets
our restriction of affine subscript expressions, we normalize
it by computing symbolic inverse functions for each non-
normalized CP subscript position. We then apply this func-
tion to each subscript position in both the CP and data
references. After this step, only the data reference has sub-
scripts of the form ajij + bj . Each subscript position gets
a canonical value number represented by an artificial induc-
tion variable that has the range and stride of the original
ajij + bj subscript expression. We apply this normalization
step to all communication events at a particular location in
the code before attempting to coalesce them.

5.3.2 Coalescing Normalized Communication Sets
Following normalization, we coalesce communication events
to eliminate redundant data transfers. There are two types

2Normalization could be extended to support more complex
affine expressions without too much difficulty.



of coalescing operations that can be applied to a pair of
communication events:

• Subsumption: Identify and eliminate a communication
event (nearly) completely covered by another.

• Union: Identify and fuse partially overlapping commu-
nication events, which do not cover one another.

Both operations eliminate communication redundancy, how-
ever these two cases are handled separately at compile time.

For both cases, the coalescing algorithm first tests to see if
communication events are compatible. To be compatible,
both communication events must correspond to the same
distributed array, be reached by the same HPF alignment
and distribution directives, have the same communication
type (read or write) and be placed at the same location in
the intermediate code.

5.3.2.1 Subsumption
The subsumption of one communication event by another
requires that the non-local data of the subsuming event be
a superset of that of the subsumed one. According to the
model for normalized data and CP references, this implies
that both messages represent data shifts of constant width in
one or more dimensions. For example, a single-dimensional
shift of a submatrix owned by a processor would correspond
to sending a few rows or columns to a neighboring processor.
A pair of shifts must be in the same direction and along the
same dimensions for communication events to be compati-
ble. For instance, trying to coalesce a shift that sends two
rows and a shift that sends two columns of a submatrix is
infeasible.

For two compatible shift communications, where the shift
width of one is larger than that of the other, the volume of
data transferred can be reduced by completely eliminating
the smaller shift since its data values will be provided by
the larger one. For dimensions not involved in a shift, the
ranges of the data reference subscript value numbers in the
subsuming communication event must be supersets of the
corresponding ranges in the subsumed event. For data di-
mensions involved in a shift, subsumption does not require
that their range be a strict superset of the corresponding
ranges in the subsumed event. If the subsuming commu-
nication has a wider shift width, but doesn’t have a large
enough range for its loop induction variable, the coalescer
synthesizes a new induction variable with extended range to
cover the induction variable in the subsumed event as well.
This range-extension technique is very effective for avoiding
partially-redundant messages and generating simple com-
munication code.

5.3.2.2 Union
Coalescing partially overlapping communication events re-
quires less strict conditions than subsumption. Given nor-
malized data and CP references, The coalescer will only try
to union communication events that have a common shift
dimensions and directions.

The dHPF compiler uses the Omega library [12] to imple-
ment operations on integer tuples for its communication

analysis and code generation [2]. We apply integer set-based
analysis to determine the profitability of unioning two com-
munication events. We construct sets that represent the
data accessed by the non-local references of each communi-
cation event. If these sets intersect, this implies that the
communication sets for some pair of processors may inter-
sect. In this case, the algorithm will coalesce the two com-
munication events by unioning them. If the sets do not inter-
sect, then the communication sets for any pair of processors
also do not intersect, which implies there is no redundancy
to eliminate, so coalescing is not performed.

As described in the previous section, generation of a coa-
lesced communication set can require that new induction
variables be synthesized with extended range. When union-
ing communication sets, this transformation is applied to an
induction variable appearing in any dimension as necessary.

5.3.3 Performance Impact
Table 5 presents the relative performance of codes where co-
alescing was applied with and without normalization. (Co-
alescing without normalization may overlook opportunities
for eliminating redundancy.) We present the ratios of exe-
cution time and communication volume between the dHPF-
generated multipartitioned versions of SP and BT with non-
normalized coalescing and those with normalized coalescing.
The results show that without normalization, both execu-
tion time and MPI communication volume increase.

Benchmark 16 proc. 64 proc.

Time SP ’A’ 1.41 2.10
Comm. Vol. SP ’A’ 1.70 1.71
Time SP ’B’ 1.28 1.65
Comm. Vol. SP ’B’ 1.71 1.71
Time BT ’A’ 1.02 1.24
Comm. Vol. BT ’A’ 1.32 1.32
Time BT ’B’ 1.04 1.08
Comm. Vol. BT ’B’ 1.32 1.33

Table 5: Impact of normalized coalescing.

We found that the reduction in execution time due to nor-
malized coalescing is mostly due to reduced communication
volume in the critical tightly-coupled line sweep routines
(x solve, y solve, z solve) of SP and BT. Loosely cou-
pled communication is also reduced, but its impact is not as
significant on machines with a high-bandwidth, low-latency
interconnect such as the Origin 2000. The greater execu-
tion time of the non-normalized version for SP cannot be
attributed completely to the extra communication volume,
because non-normalized coalescing produces sets which are
not rectangular sections; this leads to less efficient manage-
ment of communicated data, as explained in more detail in
Section 6.1.

After both partial replication of computation and normal-
ized coalescing, we found that the communication volume
for the dHPF-generated code for SP was within 1% of the
volume for the hand-coded versions. For BT, we found that
the volume in the dHPF-generated code was actually lower
by 5% (class B) and 17% (class A) than that of the hand-
coded versions.



5.4 Multi-variable Aggregation
Often, applications access multiple arrays in a similar fash-
ion. When off-processor data is needed, this can lead a pair
of processors to communicate multiple variables at the same
point in the program. Rather than sending each variable in
a separate message, dHPF reduces communication overhead
by shipping multiple arrays in a single message in such cases.
dHPF’s implementation strategy of aggregation is described
elsewhere [6]. Here we focus on message aggregation’s im-
pact on performance. Table 6 presents ratios for execution
time and communication frequency that compare the cost
of of non-aggregated versions of the codes with respect to
aggregated versions. We present the ratios of execution time
and communication frequency between the dHPF-generated
multipartitioned versions of SP and BT without aggregation
and those with aggregation. Ratios larger than one indicate
an increase in cost without aggregation. While aggregation
reduces message frequency considerably for both SP and BT
in all cases, the impact of aggregation on execution time for
BT is small because of its high computation to communi-
cation ratio. However, the latency reduction aggregation
yields eventually becomes important when scaling a compu-
tation to a large enough number of processors so that com-
munication time becomes significant with respect to compu-
tation. SP has a higher communication/computation ratio
and thus aggregation has a larger impact. For SP, as we
drop back from the larger class ’B’ to the smaller class ’A’
problem size, and/or increase the number of processors, the
execution time impact of aggregation increases. For the 64
processor execution of SP using the class ’A’ problem size,
aggregation cuts execution time by 10%.

Benchmark 16 proc. 64 proc.

Time SP ’A’ 1.02 1.10
Comm. Freq. SP ’A’ 2.12 2.31
Time SP ’B’ 1.01 1.03
Comm. Freq. SP ’B’ 2.12 2.31
Time BT ’A’ 1.00 1.01
Comm. Freq. BT ’A’ 1.37 1.43
Time BT ’B’ 1.03 1.02
Comm. Freq. BT ’B’ 1.37 1.43

Table 6: Impact of aggregation.

6. MEMORY HIERARCHY ISSUES
Today’s computer systems rely on multi-level memory hier-
archies to bridge the gap between the speed of processors
and memory. To achieve good performance, applications
must use the memory hierarchy effectively.

In the dHPF compiler, we have implemented many tech-
niques to improve memory hierarchy utilization. These in-
clude padding of dynamically allocated arrays, inter-array
tile grouping (which lays out corresponding tiles from differ-
ent arrays consecutively in memory to reduce conflicts), and
an arena-based communication buffer management scheme
to reduce the cache footprint of communication buffers. Here
we discuss a novel compiler-based technique for managing
off-processor data that increases cache efficiency.

CHPF$ distribute a(*, block) onto P
CHPF$ shadow a(0, 1:0)
do j = 2, n

do i = 1, n
a(i, j) = a(i, j - 1) + c ! ON_HOME a(i, j)

end do
end do

Figure 11: An overlap region on an array in HPF.

do j = max(2, my_j_lo), min(my_j_lo + j_blocksize, n)
do i = 1, n
a(i, j) = a(i, j - 1) + c

end do
end do

Figure 12: SPMD code using an overlap region.

6.1 Overlap Regions vs. Direct-Access Buffers
Overlap regions [9], in which a processor allocates additional
storage around the boundary of data it owns to store neigh-
boring off-processor data, are a commonly used technique
by compilers and application developers. The dHPF com-
piler allows the use of overlap regions for distributed arrays.
An HPF2 SHADOW directive specifies the extent of an over-
lap region for an array on a dimension-by-dimension basis.
Figure 11 shows HPF source code with an overlap region
specified for array a; the SHADOW directive specifies a lower
overlap of width one in the second dimension.

Overlap regions are convenient because they enable uniform
access to both local and off-processor data, which leads to
simple code for partitioned loops. For example, in Figure 12
overlap regions make it possible to access a(i, j - 1) for
j equal to the processor boundary (my j lo).

While overlap regions lead to simple SPMD code, there are
three ways that using them can degrade performance. First,
any loop accessing an array that has overlap regions allo-
cated, which does not use most of the overlap region in each
of the dimensions for which it is provided, suffers from both
reduced spatial reuse (values in the overlap region may be
fetched into cache and not used) and less effective cache
utilization (some cache sets may be underutilized because
unaccessed overlap regions map to them). Second, if data is
received into a message buffer and then copied into overlap
regions, there will be two live copies of the data occupying
space in the cache. Third, copying the data from a commu-
nication buffer into an overlap region can be costly, partic-
ularly if the data in the overlap region is non-contiguous.3

To avoid the cache inefficiency that comes with using multi-
dimensional overlap regions for single-dimensional shift com-
munication, the dHPF compiler supports accessing remote
data directly out of communication buffers. This has the
dual advantage of eliminating the unpacking phase for the
receiving processor, as well as eliminating the need for over-
lap regions on the receiving processor’s tile. Directly ac-
cessing the buffers, introduces two modes of access for array
references: boundary remote data, accessed out of the buffer
and interior data accessed out of the array.

3Any data movement in modern machines is costly!



do j = max(2, my_j_lo), min(my_j_lo + j_blocksize, n)
do i = 1, n
if (j - 1 .lt. my_j_lo) then ! REMOTE data

t1 = buffer_a(i, j - my_j_lo)
else ! LOCAL data

t1 = a(i, j - 1)
end if
a(i, j) = t1 + c

end do
end do

Figure 13: SPMD code using a direct-access buffer.

do j = my_j_lo, my_j_lo + 1
do i = 1, n
a(i, j) = buffer_a(i, j - my_j_lo) + c

end do
end do

do j = my_j_lo + 2, min(my_j_lo + j_blocksize, n)
do i = 1, n
a(i, j) = a(i - 1, j) + c

end do
end do

Figure 14: Optimized use of a direct-access buffer.

If the compiler were to generate naive code for data that
may reside either in a buffer or in a local array, the access
would require a conditional test, which may be costly. Fig-
ure 13 shows naive code for this situation. To avoid the
overhead of this approach, the dHPF compiler splits a loop
nest that accesses non-local data out of buffers into a loop
nest whose iterations may require remote data and those
that must access data only from the local array.

Loop splitting in this manner eliminates conditionals from
the interior section of the loop nest, but may not eliminate
conditionals in the non-local section of the loop nest. Fig-
ure 14 shows a split loop with one iteration space accessing
data for array a only out of the local array section, and
the other iteration space accessing data out of a buffer. In
this case, it was possible to eliminate all conditionals for the
non-local reference, because the set of non-local iterations
for the statement is a subset of the non-local iterations for
the reference. In a more general case, the non-local itera-
tion space may not access exclusively off-processor data; a
conditional would be required in this case.

6.1.1 Aggregation and Direct Buffer Access
Direct buffer-access is very useful, especially in combina-
tion with communication aggregation. Incoming non-local
data for different arrays or disjoint sections of the same ar-
ray is laid out sequentially in the buffer. dHPF generates
code for directly accessing such data by using pointers into
each contiguous section in the buffer. With this scheme, the
dHPF compiler supports direct access to buffers comprised
of unions of constantly-strided rectangular sections.

6.1.2 Performance Impact
We compare the efficiency of using direct-access buffers and
overlap regions for the selected benchmarks. Table 7 presents
ratios that compare the execution time and L2 cache misses

for versions using overlap regions with respect to versions us-
ing direct access buffers. We present the ratios of execution
time and L2 data cache misses between the dHPF-generated
multipartitioned versions of SP and BT without direct buffer
access and those with it. Both the execution time and L2
cache misses increase without direct access buffers.

Benchmark 16 proc. 64 proc.

Time SP ’A’ 1.13 1.40
L2 Misses SP ’A’ 1.22 1.41

Time SP ’B’ 1.19 1.10
L2 Misses SP ’B’ 1.09 1.11

Time BT ’A’ 1.02 1.03
L2 Misses BT ’A’ 1.01 1.09

Time BT ’B’ 1.04 1.04
L2 Misses BT ’B’ 1.00 1.01

Table 7: Impact of direct-access buffers on SP and
BT.

Direct-access buffers play a significant role in reducing L2
data cache misses by avoiding extra copies into shadow re-
gions and reducing the memory footprint of large multidi-
mensional arrays. In particular, they are very important
for the tightly-coupled line sweep phases of the SP and BT
benchmarks and the lhs and rhs arrays they use.

7. CONCLUSIONS
The results presented in this paper show that the dHPF
compiler is able to virtually match the performance of so-
phisticated, carefully tuned, hand-coded parallelizations of
the NAS SP and BT benchmarks. To our knowledge this is
the first time that data-parallel compilers have been able to
deliver performance at this level for such tightly-coupled line
sweep applications. Achieving this level of performance was
not a matter of just implementing a few “big-ticket” opti-
mizations. Delivering hand-coded performance with a data-
parallel compiler requires a surprisingly broad spectrum of
analysis and code generation techniques. With the excep-
tion of support for the multipartitioning data distribution,
the optimizations we implemented in dHPF have broad ap-
plicability. We believe that they will be useful for other par-
allel architectures, although their relative importance may
differ depending upon the parameters of the architecture.

Our experience is that everything affects scalability. Excel-
lent parallel performance requires not only a good parallel al-
gorithm, but also excellent resource utilization on the target
parallel machine. A fast, scalable program must make effec-
tive use of the processors, memory hierarchy and processor
interconnect. For data parallel compilers, the implications
are clear: discovering parallelism is only the beginning; ex-
ploiting it effectively is not necessarily as glamorous, but it is
critically important. Optimizations must aim to effectively
utilize all classes of resources in a parallel system. Only by
targeting each potential source of inefficiency in compiler-
generated parallel code can data-parallel compilers achieve
the level of performance that will make them acceptable to
application scientists.

Our ongoing work is focused on exploring data-parallel com-
piler issues for other types of numerical applications.
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