Java Type Inference Is Broken: Can We Fix It?

Daniel Smith

Department of Computer Science
Rice University
Houston, Texas, USA

dlsmith@rice.edu

Abstract

Java 5, the most recent major update to the Java Program-
ming Language, introduced a number of sophisticated fea-
tures, including a major extension to the type system. While
the technical details of these new features are complex, much
of this complexity is hidden from the typical Java devel-
oper by an ambitious type inference mechanism. Unfortu-
nately, the extensions to the Java 5 type system were so novel
that their technical details had not yet been thoroughly in-
vestigated in the research literature. As a result, the Java 5
compiler includes a pragmatic but flawed type inference al-
gorithm that is, by design, neither sound nor locally com-
plete. The language specification points out that neither of
these failures is catastrophic: the correctness of potentially-
unsound results must be verified during type checking; and
incompleteness can usually be worked around by manually
providing the method type parameter bindings for a given
call site.

This paper dissects the type inference algorithm of Java
5 and proposes a signficant revision that is sound and able
to calculate correct results where the Java 5 algorithm fails.
The new algorithm is locally complete with the exception of
a difficult corner case. Moreover, the new algorithm demon-
strates that several arbitrary restrictions in the Java type
system—most notably the ban on lower-bounded type pa-
rameter declarations and the limited expressibility of inter-
section types—are unnecessary. We hope that this work will
spur the evolution of a more coherent, more comprehensive
generic type system for Java.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory—Semantics;

D.3.2 [Programming Languages]: Language Classifications—

Java, Object-oriented languages; D.3.3 [Programming Lan-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’08, October 19-23, 2008, Nashville, Tennessee, USA.

Copyright (© 2008 ACM 978-1-60558-215-3/08/10. .. $5.00

505

Robert Cartwright

Department of Computer Science
Rice University
Houston, Texas, USA

cork@rice.edu

guages]: Language Constructs and Features—Classes and
objects, Polymorphism

General Terms Design, Languages

1.

Java 5', the most recent major update to the Java Program-
ming Language, introduced a number of sophisticated fea-
tures, including a major extension to the type system. While
the technical details of these new features are complex, much
of this complexity is hidden from the typical Java developer
by an ambitious type inference mechanism.

Prior to the release of Java 5, there was no type infer-
ence in Java. According to the Java language culture, the
type of every variable, method, and dynamically allocated
object must be explicitly declared by the programmer. When
generics (classes and methods parameterized by type) were
introduced in Java 5, the language retained this requirement
for variables, methods, and allocations. But the introduction
of polymorphic methods (parameterized by type) dictated
that either (i) the programmer provide the method type ar-
guments at every polymorphic method call site or (ii) the
language support the inference of method type arguments.
To avoid creating an additional clerical burden for program-
mers, the designers of Java 5 elected to perform type in-
ference to determine the type arguments for polymorphic
method calls.

Since generics constituted a major technical addition to
the language, the Java language designers, with input from
the Java Community Process [15], spent several years care-
fully evaluating potential generic extensions and their tech-
nical implications. Nevertheless, the final design included a
novel mechanism for declaring special union types called
wildcards supporting covariant and contravariant subtyping.
The use of wildcards also necessitated adding some sup-
port for intersection types in the language. The inclusion of
wildcards helped support the accurate parameteric typing of

Introduction

! Throughout this paper, we use “Java 5” to refer to the language update
coinciding with the release of Java SE 5.0 and specified by the 3rd edition
of the Java Language Specification (JLS) [3]. The current Java platform
version, Java SE 6.0, is consistent with this specification and makes no
relevant language changes.

many existing Java library methods, including the reflection
library, which is an impressive achievement. On the other
hand, this feature was so novel that its technical foundations,
particularly with regard to type inference, had not yet been
thoroughly investigated in the research literature.

Java wildcards are loosely based on virtual types, initially
presented in the context of generic classes by Thorup and
Torgersen [11] and subsequently refined by Igarashi and Vi-
roli [5]. But none of this supporting research focused on
a core subset of the actual Java 5 design. Moreover, none
of this prior work covered all of the technical problems
that arise during type argument inference. As a result, the
Java 5 compiler includes a pragmatic but flawed type infer-
ence algorithm. While it essentially follows Odersky’s al-
gorithm for GJ [1] (an academic forerunner of Java 5 that
did not include wildcards), the additional complexity intro-
duced by wildcards and intersections led to an algorithm that
is, by design, neither sound nor locally complete.? The Java
Language Specification (JLS) [3] points out that neither of
these failures is catastrophic: the correctness of potentially-
unsound results must be verified during type checking; and
incompleteness can usually be worked around by manually
providing the method type parameter bindings for a given
call site.?

This paper dissects the type inference algorithm of Java
5 and proposes a signficant revision that is sound and able
to calculate correct results where the Java 5 algorithm fails.
The new algorithm is locally complete with the exception of
a difficult corner case. Moreover, the new algorithm demon-
strates that several arbitrary restrictions in the Java type
system—most notably the ban on lower-bounded type pa-
rameter declarations and the limited expressibility of inter-
section types—are unnecessary. We hope that this work will
spur the evolution of a more coherent, more comprehensive
generic type system for Java.

To motivate the need for changes in the algorithm, we
first enumerate a number of bugs buried in the specification.
Next, we discuss ways in which, even after these bugs have
been addressed, the algorithm falls short—either because
it fails to correctly type a typeable program (requiring the
programmer to insert explicit annotations), or because it
unduly limits expressiveness of the language. Among these
shortcomings is an incorrect join function and the language
restrictions noted above.

Next, we formally specify an improved inference algo-
rithm that addresses many of the shortcomings in the Java 5
algorithm. This specification includes definitions of the lan-
guage’s core type operations, such as subtyping and wildcard
capture.

2 Soundness requires that inferred type arguments not violate the typing
rules; completeness requires that the algorithm produces a result where
some valid choice of type arguments exists.

3 Note, however, that some types, such as wildcard capture variables, are
inexpressible and thus can’t be used as explicit type arguments.

506

Finally, we discuss the implications for backwards com-
patibility arising out of changes to the inference algorithm.

2. Java 5 Inference
2.1 Overview

The Java 5 type argument inference algorithm produces type
arguments for use at a specific call site of a polymorphic
method. For example, consider the following method decla-
ration:

class Util {
static <T> Iterable<T>
compose (Iterable<? extends T> list, T elt) {

}
}

where compose adds a new element to an Iterable collec-
tion. As a running example, we’ll refer to the following type
hierarchy:

interface Animal { ... }
interface Herbivore extends Animal { ... }
interface Carnivore extends Animal { ... }

Given an Iterable<Herbivore> named hs, an Herbivore
h, and a Carnivore c, a client may invoke compose with an
explicit type argument:

Iterable<Herbivore> hs2 =
Util.<Herbivore>compose(hs, h);

Iterable<Animal> hs3 =
Util.<Animal>compose(hs, c);

or, more typically, elide the type argument and rely on type
inference to choose a value based on the types of the argu-
ments:

Iterable<Herbivore> hs2 = Util.compose(hs, h);
Iterable<Animal> hs3 = Util.compose(hs, c);

The Java 5 inference algorithm frames the problem as a
heuristic attempt to satisfy a set of subtyping constraints [3,
15.12.2.7-8]1.4 Let P; ... P, be the method’s type parame-
ters. The notation [P; | represents the declared upper bound
of P (this notation extends to arbitrary type variables; later,
we’ll use | X | to refer to variable X’s lower bound). Given
Aj ... A, as the types of the method invocation’s arguments
and Fj ... F,, as the corresponding method parameters’ de-
clared types, we must find a substitution ¢ binding P; ... P,
that satisfies the following constraints (for all valid choices
of -—there are m + n such constraints to satisfy):

Ai <: CTFi
oP; < 0[P

In certain circumstances, the algorithm also takes into ac-
count the type expected by the method invocation’s context.

41In the following discussion, we depart from the notation used by the JLS in
order to maintain a consistent presentation throughout this paper. However,
the ideas expressed by the notation are consistent with the specificaiton.

That is, where R is the method’s declared return type and F
is the expected type,

cR< FE

is added to the set of subtyping constraints. The type E
is only defined, and thus this additional constraint is only
used in inference, where the method invocation appears as
the value of a return statement, the initializer of a variable
declaration, or the right-hand side of an assignment. That is,
only in contexts in which the programmer has provided an
explicit value for E. (And even where F is defined, the Java
5 algorithm often ignores it.)

Note that these constraints describe exactly the conditions
under which an invocation of a non-overloaded method with
well-typed arguments is well-typed (and, if the constraint in-
volving E is used, the conditions under which the enclosing
expression is well-typed): if the constraints are satisfiable,
there exists a choice of type arguments that makes the ex-
pression well-typed; if the constraints are unsatisfiable, the
expression is ill-typed for all choices of type arguments.

The Java 5 algorithm generates this set of constraints for
each polymorphic method call site, and then the algorithm
attempts to choose a value for o satisfying the constraints.
In the last compose invocation above—Util.compose (hs,
c)—the relevant constraints are:

Iterable<Herbivore> <: cIterable<? extends T>
Carnivore <: 0T

0T <: 0bject

The first two constraints are derived from the invocation
argument types, and the third from the (trivial) bound of T.
The inferred substitution is [T := Animal].

Because the algorithm makes no guarantees about its
results—it is, by design, neither sound nor complete—type
checking handles the inferred arguments as if they were ex-
plicitly provided by the user: first checking their correctness,
and then using them to determine the type of the method in-
vocation expression.

2.2 Constraint Solving

Internally, the Java 5 algorithm is a two-step process. First,
argument—value pairs (A; and F; for all i < m) are reduced
to a conjunction of bounding constraints on the instantia-
tions of P ... P,. Each constraint is an assertion that o P;,
for some i, is a subtype or supertype of a given bound. Sec-
ond, a type satisfying these bounds is chosen for each type
argument.

The reduction in the first phase is achieved with three mu-
tually recursive functions <:-, :>-, and =-. Each function
© takes two arguments, A (derived from an argument type)
and F' (derived from a formal parameter type), and attempts
to produce constraints describing the circumstances under
which A ©® oF is true. In the base case, where F' = P;, the
result is a bound on the corresponding argument, o P;.

507

For example, in the last compose invocation, the following
two constraints must be reduced (0T <: Object, derived from
the declared bound on T, is ignored until the second phase):

Iterable<Herbivore> <: cIterable<? extends T>

Carnivore <: 0T
Bounds for the second constraint are trivially produced:
Carnivore <:» T = {0T :> Carnivore}
Handling the first constraint is slightly more complex:

Iterable<Herbivore> <:; Iterable<? extends T> =

Herbivore <:» T = {O'T > Herbivore}
Thus, the full set of bounds for the compose invocation is
{O'T :> Herbivore, 0T :> Carnivore}

In the second phase, the lower bounds of o P; are com-
bined with a join operation to produce a single type.’ The
join function is also implemented heuristically: ideally, the
invocation join(S,T) produces a most specific type J such
that S <: J and T <: J. By most specific we mean that any
other common supertype J’ of S and 7' is also a supertype of
J:VJ',J <: J'. The Java 5 join function produces a com-
mon supertype, but in some cases it is not the most specific.

In the running example, we have

0T :> join(Herbivore, Carnivore) = Animal

In most cases, the result of joining the lower bounds of
o P; is then chosen as the binding of P;. If, however, this
is the type null (as is the case where there are no lower
bounds), the declared bounds of P; ... P, are incorporated;
if the expected type of the call E is defined, the bounds
produced by E :>. R are also used. In this case, the upper
bounds of o P; are merged (by constructing an intersection)
to produce the binding.

2.3 Bugs in the Java 5 Algorithm

The Java 5 algorithm produces useful results in most situa-
tions. However, there are a number of cases in which it fails,
either because there exist choices for o that it does not find,
or because its choice of o does not satisfy the relevant sub-
typing constraints. In both cases, this can lead to type errors
or, where either the method to be invoked or an enclosing
method call is overloaded, unexpected runtime behavior. It
will not, fortunately, lead to violations of type safety, be-
cause type checking makes no assumptions about the cor-
rectness of the algorithm’s results. Some of the unsound-
ness and incompleteness properties of the algorithm arise
from conscious engineering decisions. But in many cases the
heuristic nature of the algorithm provides a cover for unin-
tentional bugs. Some of these bugs are outlined below.

3 The join function is called lub (for “least upper bound™) in the JLS [3,
15.12.2.7].

® The join function is defined incorrectly for some wildcard-
parameterized types:

join(List<? extends A>,List<? super A>) = List<A>

This is clearly incorrect—the result is a supertype of
neither join argument.

The join function, because it discards some type infor-
mation, is unnecessarily imprecise in some cases: the re-
sult cannot be a type variable (even if that variable is the
common supertype of two other variables), nor can it be
an array of a parameterized type (like List<String>[]).

The inference algorithm does not correctly handle type
variables. For example, where A is a variable and F' is
an array type, A :>- F recurs on A’s upper bound rather
than its lower bound.

Default bounds on wildcards (Object and null) are in-
correctly ignored by the algorithm. For example:

List<? super String> <:; List<? extends T>
This ought to produce {oT :>0Object}, rather than the
specified {}.6

The algorithm’s use of a parameter’s upper bound allows
references to a parameter to leak into the calling context.
For example, given the following method signature:

<T extends List<T>> T foo()

Inference may determine (depending on the enclosing
context) that T = List<T>.

In addition to these bugs, the algorithm does not correctly
handle the type null: null :>- T produces no bounds when
it ought to produce {T <: nu11}. While clearly a mistake (the
algorithm explicitly defines an incorrect result for null), this
is not a problem as the language is currently defined, be-
cause no invocation involving null as a supertype ever oc-
curs: null is inexpressible, is never chosen by the inference
algorithm, and is ignored when it appears as a default bound.
However, subtle changes to the language, including a fix for
the wildcard-bound bug listed above, may violate this invari-
ant.’

2.4 Additional Limitations

In addition to the mistakes described above, the Java 5 al-
gorithm is limited by design in a number of ways. In some

6 This bug is of particular significance to the javac compiler, because it
fails to verify the correctness of the inference results in this case, leading to
a violation of type safety: code that compiles without error (or warning)
will fail at runtime with an erasure-prompted ClassCastException. See
Appendix A.1 for an example.

7 Note that the inference algorithm in Section 3 does produce nu11. Also, an
expressible null type would be quite useful; there is an independent sub-
mission in Sun’s Java bug database requesting it, with some accompanying
discussion [17].

508

cases, these limitations lead to unsoundness or incomplete-
ness; in others, they force restrictions on the rest of the lan-
guage. Unlike the above bugs, which are clearly faults in
the specification, language changes involving these items
are open to debate. However, we argue that the community
would be well served by amending the specification to ad-
dress these limitations.

2.4.1 Correct Join

As mentioned previously, the Java 5 join function does
not always produce a most specific bound.® As a simple
example, consider the following invocation:

join(List<Object>, List<String>)

The correct result in this case is List<? super String>;
the Java 5 function, however, never produces wildcards with
lower bounds, and will instead produce List<?>.

The correct definition in other cases is more subtle. Con-
sider a similar invocation in which the two list element types
are not directly related, but share a common supertype:

jOin(List<Herbivore>7 List<Carnivore>)

The following is a tempting choice for the result (and is
the result chosen by the Java 5 algorithm):

J1 = List<? extends Animal>

However, it is equally reasonable to choose a lower bound
for the wildcard:

Jo = List<? super Herbivore & Carnivore>

Both J; and J» are supertypes of both List<Herbivore> and
List<Carnivore>; yet neither is a subtype of the other. In
practice, which type is more convenient depends on how the
type is used (J; accommodates get operations, while J5 ac-
commodates add operations). A joint University of Aarhus—
Sun Microsystems paper introducing wildcards makes note
of this ambiguity [12, 3.1], but does not mention how it can
be resolved—by either (i) producing a wildcard with both
bounds:

List<? extends Animal super Herbivore & Carnivore>
or (ii) using a union type to represent the join:

List<Herbivore> | List<Carnivore>

Both of these types are subtypes of J; and .J», and both are
optimal (the first is optimal in the absence of union types).
But neither is valid in Java 5, so to accommodate either
approach, the language would need to be extended.

A second problem with join is that it is recursive but not
normalizing: the computation of join(S,T) may depend on
itself. For example, we may choose to define classes C and D
as follows:

8 Thus the result is thus not really a join or least upper bound at all, as the
terms are used in lattice theory.

class C implements Comparable<C> { ... }
class D implements Comparable<D> { ... }

Invoked with such types, the Java 5 join function has a
circular dependency:

join(c,D) =
join(Comparable<C>, Comparable<D>) =

Comparable<? extends join(C,D)> =

This circular dependency is handled in the JLS by intro-
ducing recursive types. Informally, the result of the above
join invocation is:

Comparable<? extends Comparable<? extends ...>>
Formally, this is the type
pX.Comparable<? extends X>

Unfortunately, outside the context of the join function’s
definition, the specification makes no mention of such types.
They are not included in the definition of types, and their
subtyping relationships with other types are left unspecified.

Again, there are two alternatives. The first is to fully spec-
ify the behavior of all type operations (including subtyping,
join, and inference) where recursive types are present. The
second is to abandon recursive types and instead compute
join using union types. This also requires adjusting the do-
main of all type operations, but has the advantage that algo-
rithms involving unions are far simpler than those involving
recursive types.

2.4.2 Analysis Using Wildcard Capture

In order to analyze subtyping relationships involving a
wildcard-parameterized type, the Java 5 subtyping algo-
rithm makes use of a wildcard capture operation (denoted
||T||) that replaces the implicit “there exists” quantification
expressed by a wildcard with a fresh type variable. Where
class C declares parameter P,

|[C<? extends B>|| = C<Z>

where [Z]| = B & [P .= Z|[P]

For example, the class Enum has the following signature:

class Enum<E extends Enum<E>>
implements Comparable<E>

The assertion

Enum<? extends Runnable> <:

Comparable<? extends Enum<7>>
is true if and only if

|Enum<? extends Runnable>H = Enum<Z> <:

Comparable<? extends Enum<7>>

where the fresh variable Z has both the wildcard’s and the
corresponding parameter’s upper bounds:

fﬂ = Runnable & Enum<ZzZ>

(In this particular example, the subtyping assertion is true,
because Z <: Enum<?>.)

The Java 5 inference algorithm is inconsistent with the
Java 5 subtyping algorithm in handling wildcards: rather
than reasoning about wildcards by using capture, it simply
recurs on the wildcard bound, ignoring the bound of the
corresponding type parameter. The invocation

Enum<? extends Runnable> <:; Comparable<? extends T>

produces {oT :> Runnable}. This constraint is too restric-
tive: the type Enum<?>, as we saw, is a valid choice for oT,
but is not allowed by this inferred bound.

The apparent solution to this omission is to invoke cap-
ture in inference whenever it occurs in subtyping. However,
this strategy forces us to generalize the inference algorithm
to handle the broader domain of types generated by this rule.

There is an implicit assumption in the Java 5 algo-
rithm that the constraints for all subtyping relationships
with which it is presented can be expressed as a conjunc-
tion of simple bounds. Note, however, that the application
A:>; Fi & F» does not conform to this scheme: it can be
satisfied by A :>- F} or A :>- F». In order to avoid the pos-
sibility that relevant information will be discarded, the Java
5 algorithm must guarantee that such applications will never
occur.

In the absence of wildcard capture in type inference, we
can make the following assertions about the arguments to
<iz, :>7, and =+

e The argument F, if it is a variable but not one of
P ... P,, cannot have bounds involving any of P; ... P,,.
This property holds because F' is always derived from a
type appearing in the method signature, and, due to scop-
ing constraints, no variable appearing there can reference
P ... P, atits declaration point.

¢ In <:,, where A is an intersection type and F' is a class
type, there is at most one class supertype of the intersec-
tion that has the same class name as the upper type; where
A is an intersection and F' is an array type, if the inter-
section has an array supertype, it also has a most specific
array supertype.’

e The argument F' cannot be an intersection type. Intersec-
tions can only be reached by the recursive application of
the inference functions. However, variables, which might
have intersections in their upper bounds, cannot involve
any of P ... P,, and so the recursion would never occur;

9As a technicality, the JLS does not describe how A <:» F' should be
handled where A is an intersection and F' is an array, but the correct
behavior follows directly from this assumption.

and for the reasons outlined in the previous point, there
is no need to represent the supertype of a class type as an
intersection.

Under these assumptions, all bounds produced by infer-
ence are cumulative. However, capture during inference vio-
lates the first assumption: it can produce new variables with
bounds that refer to P; ... P,.

In order to extend the inference algorithm to handle in-
vocations where one of a number of different constraint sets
must hold, the representation of constraint sets can be ex-
tended to constraint formulas: simple bounds on 73 ... T,
combined by boolean conjunction and disjunction. To reduce
the complexity inherent in arbitrary boolean formulas, the
domain of constraint formulas can be restricted to disjunc-
tive normal form—a list of constraint sets (conjunctions),
only one of which need be satisfied by the final choice of
T...T,.1°

A simpler but less complete solution is to use capture
in restricted scenarios that do not necessitate the use of
disjunction. We can perform capture on A, for example,
without violating any of the above assumptions.

2.4.3 First-Class Intersection Types

As noted in the previous section, intersection types can intro-
duce additional complexity to the inference algorithm. For
this reason, their use in Java S is extremely limited: a pro-
grammer may only express an intersection in code when it
appears as the upper bound of a type variable. (Program-
mers may be surprised to discover that the upper bound of
a wildcard cannot be similarly expressed with an intersec-
tion.) If we are willing to extend the inference algorithm so
that it handles disjunctive constraint formulas—as described
above—it then becomes possible to support intersections as
first-class citizens in the domain of types, admitting their us-
age anywhere an arbitrary type can appear.!!

As a simple motivating example, the Java API includes
the interfaces Flushable and Closeable, implemented by
streams that support a f1ush and a close operation, respec-
tively. Taking advantage of these interfaces, it might be con-
venient to create a thread that occasionally flushes a stream,
and at some point closes it. Such a thread would need to ref-
erence a variable of type Flushable & Closeable.

Another example appears in Appendix A.2. By using
intersections in method signatures and implementation code,

10 Normalization to disjunctive normal form, as with other methods for solv-
ing arbitrary logical formulas, can potentially take an intractable amount of
time and space for large problem sizes. However, in this particular appli-
cation, problem sizes are always quite small: programmers almost never
use more than four or five type parameters, for example, and we gener-
ally expect the number of distinct, incompatible bounds inferred for those
variables to be relatively small. Also note that the complexity encoded by
multiple disjuncts is discarded once inference at a particular call site deter-
mines a solution—multiple nested polymorphic method calls will not lead
to exponential growth in the size of constraint formulas.

! There is an independent submission in Sun’s Java bug database requesting
this feature, with some accompanying discussion [18].

510

it is possible to define an ordered set that ensures that its
elements are comparable to each other without requiring the
element type T to explicitly implement Comparable.

InJava 5, it is often possible to approximate the first-class
use of an intersection by introducing a type variable T with
an intersection upper bound, and replacing all instances of
the intersection with references to T. However, this approach
is inconvenient for the same reason that writing programs
without wildcards is inconvenient—it results in a prolifera-
tion of variable declarations that are irrelevant to the public
interface of a class or method. Further, such a conversion is
not possible in general: a mutable field, for example, may
hold values with different types, all compatible with the in-
tersection, over the course of its lifetime. There may be no
non-intersection choice for T that covers the domain of these
values.

Support for first-class intersections, combined with the
ability to make full use of wildcard capture during infer-
ence, provides a compelling motivation for extending the in-
ference algorithm with disjunctive reasoning.

2.4.4 Recursively-Bounded Type Parameters

Java 5 supports F-bounded polymorphism: a type parameter
may appear recursively within its own bound; mutual recur-
sion among parameter bounds is also allowed. As noted in
the list of specification bugs (Section 2.3), where the infer-
ence algorithm attempts to incorporate the upper bounds of
P, ... P, before choosing o, it does so incorrectly and al-
lows these recursive references to leak into the calling con-
text.

Notice that the subtyping constraint involving parameter
bounds make reference to o on both sides of the constraint:

O'Pi <: (T|_Pi-|

Thus, the techniques used to solve other subtyping con-
straints are difficult to apply here.

If we’re interested in simply patching the specification
bug, the workaround is for inference to give up in cases that
will produce out-of-scope results. A more useful solution is
to simply ignore upper bounds and always choose the in-
ferred lower bound (even if it is null). In practice, where
there are multiple correct choices for o, choosing the most
specific instantiations—the inferred lower bounds—is usu-
ally most useful to programmers.

However, this solution is incomplete. Consider a simpli-
fied case in which there is only one parameter, P. Infer-
ence may determine that o P :> T, for some T'. Yet where
T #: [P :=T][P] itis possible that there exists some .S such
that T' <: S <: [P := S][P]. The choice of o changes the
bound that must be satisfied—the types [P :=T][P] and
[P := S][P] need not be related.

As an example, consider a type MyString which ex-
tends the standard String class (which in turn extends

Comparable<String>).'?> Now assume we pass two MyStrings
to a method with the following signature:

<T extends Comparable<T>> T min(T x, T y)

The best choice for o is [T := String]. But the inferred lower
bound is MyString, not String. Thus, inference fails to pro-
duce a correct result, and the user must provide an explicit
parameter.'?

To improve on the “lower bound” strategy, what is needed
is a way to describe a type that falls within a number of
bounds, some of which are in scope in the calling context,
and some of which are parameterized by P; ... P,. Interest-
ingly, wildcard capture has already been defined for exactly
this purpose! It combines the bound of a wildcard with the
potentially-recursive bound of a type parameter.

Unfortunately, if we examine the results of wildcard cap-
ture applied to lower-bounded wildcards, we find that it, too,
is incapable of managing some recursive bounds. For exam-
ple, if class Foo has a parameter T extends Comparable<T>,
we have the following:

||[Foo<? super MyString>|| = Foo<Z>
where |_Z—‘ = Comparable<Z>
and |Z| = MyString

In this case, the capture variable Z (and thus the wildcard
itself) is malformed, because its bounds are inconsistent:
MyString «: Comparab1e<Z>.14

It is not clear how best to proceed. If wildcard cap-
ture could be improved in some way so that this class of
seemingly reasonable type expressions were well-formed,
it would be a useful fall-back for constraint solving in in-
ference: where a set of inferred lower bounds do not sat-
isfy the declared bounds of a method’s parameters, a set
of properly-bounded capture variables could be chosen in-
stead. But describing such an improvement remains an open
research question.

Another alternative is to use trial and error, walking a
depth-first traversal of the type hierarchy from the lower
bound to Object. But it is not clear that the satisfying type
S, if it exists, will always appear in this enumeration.

Barring a universal solution to this problem, any Java type
argument inference algorithm will be incomplete.

12 String cannot actually be extended, because it is declared final. But it
is a familiar class that implements Comparable, so we use it here.

13 Another workaround in this case is to use a wildcard in the bound:
Comparable<? super T>.That works for this simple method, but would not
if a more complex class were being used. See Appendix A.3 for a similar,
but more realistic and complex, example.

14 While the specification is not clear about the conditions under which a
wildcard is malformed, it would violate transitivity of subtyping if capture
were allowed to produce a variable with a lower bound that was not a
subtype of its upper bound. Thus, such wildcards must be malformed.

511

2.4.5 Lower-Bounded Type Parameters

While wildcards may be bounded from either above or be-
low, type parameters are not given this flexibility: only an
upper bound is expressible. It’s natural to wonder whether
this inconsistency is necessary (especially given that vari-
ables produced by wildcard capture can have both upper and
lower bounds).!? In fact, the limitation is closely tied to the
type argument inference algorithm, and improvements to the
algorithm would make this restriction unnecessary.

At first glance, it may seem that a lower bound on a type
variable provides no useful information for the programmer.
For example, if T has a lower bound Integer and a method
declares a parameter of type T, the method programmer
must assume that, in the most general case, T represents the
type Object, and thus has none of the methods specific to
Integer.

This intuition, however, is superficial. When the type T is
nested, both upper and lower bounds of the variable may be
useful. The following method definition, not legal in Java 5,
demonstrates one reasonable use of a variable with a lower
bound:

<E super Integer> List<E> sequence(int n) {
List<E> res new LinkedList<E>();
for (int i 1; i <= n; i++) { res.add(i); }
return res;

}

Depending on the instantiation of E, the sequence method
can be used to create lists of Integers, lists of Numbers,
or lists of Objects (among other things). In each case, the
method will add some number of Integers to the list before
returning it.

This example could be roughly translated into legal Java
by replacing E with a wildcard (eliminating the type variable
declaration and returning a List<? super Integer>). But
this is not a satisfactory alternative: a client may, for exam-
ple, need to read from and write to a List<Number>, while a
List<? super Integer>’s get method returns Objects and
its add method accepts only Integers.

In addition to the practical argument, support for lower-
bounded variable declarations is mandated by an appeal
to uniformity: these bounds directly complement similar
bounds on wildcards. The Aarhus—Sun paper notes that,
where a name representing a wildcard is needed, the equiva-
lent of an existential-type open operation may be performed
by invoking a polymorphic method [12, 3.3].!6 For exam-
ple, it is possible to shuffle (both read from and write to) a
List<?> by invoking a method with signature

<E> void shuffle(List<E> 1)

15 This feature has been independently requested and discussed in Sun’s
Java bug database: [16].

16 Existential types are traditionally used to define an API in terms of a
private, unnamed type. Clients of the API can use it by invoking an open
operation, declaring a type variable as a stand-in for the private type.

Similarly, we can sort a wildcard-parameterized list, as long
as the wildcard is bounded by something we know how to
sort (a List<? extends Number>, say):

<E extends Number> void sort(List<E> 1)

Unfortunately, this strategy cannot work for lower-bounded
wildcards, since Java 5 prohibits the declaration of a cor-
responding lower-bounded type variable. This problem is a
fundamental deficiency in the language’s support for wild-
cards: a “handle” or witness for certain wildcards is simply
inexpressible without the loss of information about the wild-
cards’ bounds. (See Appendix A.4 for a pseudo—real-world
example in which such a handle is needed.)

Given the significance of lower-bounded parameters, why
are they prohibited? The JLS indirectly provides some in-
sight into the language designers’ motivation for making this
restriction. While discussing lower bounds on wildcards, it
implies that allowing lower bounds on method type param-
eters would make type inference for these methods impos-
sible: “Unlike ordinary type variables declared in a method
signature, no type inference is required when using a wild-
card. Consequently, it is permissible to declare lower bounds
on a wildcard” [3, 4.5.1].

It’s easy to see that where inference consistently chooses
the inferred lower bound as a parameter’s instantiation, that
bound will often violate the parameter’s declared lower
bound.

Where the declared lower bound is not defined in terms of
P, ... P,,the solution is trivial: simply join the two bounds.
But for interdependent lower bounds (probably rare in prac-
tice, if they serve any purpose at all), we can encounter the
same problems as described in the previous section. For-
tunately, wildcard capture can easily be extended to han-
dle lower-bounded type parameters. And since many typical
method invocations do not lead to inferred upper bounds,
the capture-based strategy described in Section 2.4.4 will
often produce useful, well-formed results. The only cases
that can’t be handled, as in the previous section, are those
in which a capture variable appearing in an interdependent
bound makes the type incompatible with the opposite in-
ferred bound. In practice, such occurrences involving inter-
dependent lower bounds are probably quite rare.

2.4.6 Broader Inference Locality

Finally, perhaps the most visible shortcoming of Java 5 in-
ference is its limited local scope. As has been discussed, the
choice for o at a particular call site is almost always deter-
mined exclusively by the types of the invocation’s arguments
and the corresponding method parameters. But there are of-
ten a number of valid local choices for o; choosing the best
one from a broader perspective depends on how the return
type of the method is used in a wider context.

As a simple example, where a method with type pa-
rameter T returns values of type List<T>, an assignment to

512

a variable of type List<Cloneable> will only be valid if
o = [T:=Cloneable|. Any more specific choice for T will
render the program incorrect. Similarly, if we nest the ex-
pression in another method invocation, the best choice for o
depends on the corresponding formal parameter type. And if
the outer method is overloaded or parametric, determining a
choice for o that will render the entire expression well-typed
is quite complex.

This potential for complexity highlights a tension be-
tween two important language design goals. On the one
hand, we do not want to force programmers to insert ex-
plicit type annotations where those annotations appear ob-
vious and redundant. On the other hand, we do not want the
complexity of inference to lead to programmer confusion,
where programmers cannot easily predict what the results of
inference (and, where overloading is involved, the behavior
of the program) will be.

We can balance these concerns and still improve the al-
gorithm by making more use of the bounds arising from
an easily-determined expected type. As has been discussed,
these bounds are derived from the following constraint:

cR<: FE

While, strictly speaking, any use of the expected type E
allows context to influence the type of an expression, this
is not a concern in practice because E is only defined where
its value is obvious to programmers (specifically, where the
method invocation is the value of a return statement, the
initializer of a variable declaration, or the right-hand side of
an assignment). The Java 5 algorithm makes use of these
bounds in limited cases, but it would be simple to extend the
algorithm to always use them where E is defined.

It might also be practical to define E in additional con-
texts, such as where the invocation is an argument to another
method invocation, and the outer method is neither over-
loaded nor parametric.

3.

Having considered a variety of solutions to shortcomings in
the Java 5 type argument inference algorithm, we now com-
bine and formally present some of these solutions in a full
algorithm definition.'” As was discussed, there are a num-
ber of ways to handle many of the algorithm’s limitations
(including simply accepting them). Here we present one ap-
proach, motivated by a desire to address most of the above
concerns while minimizing language changes. All the listed
bugs have been fixed; the possibility of other bugs is min-
imized by defining subtyping in a syntax-directed manner,
and by specifying subtype inference to correspond directly

Improved Algorithm

17 This definition was originally published as one of two type system varia-
tions by Smith [10]. This version supersedes the first variation, and includes
both some technical corrections and some improvements to the presenta-
tion. The second variation is not included here, but may be independently
useful: it formalizes the JLS’s usage of recursive types.

with subtyping. The join operation is replaced with union
types; recursive types are not present. Inference is able to
handle disjunctive constraints by using constraint formulas,
represented in disjunctive normal form. First-class intersec-
tion types and lower bounds on declared type variables are
supported; wildcards and type variables are generalized to
allow a single variable or wildcard to have both an upper
and a lower bound. Inference still occurs on a per-invocation
basis, but the expected return type is always used when it is
available.

Unlike core calculi like Featherweight Java [4], this def-
inition is intended to cover the full scope of the Java lan-
guage. On the other hand, it is not a full language definition,
but rather limited to a definition of types and the tools needed
to analyze them.

3.1 Fundamentals

3.1.1 Types
A type is one of the following:

® The null type (denoted null here, but distinguishable by
context from the value null).

® A ground parameterized class type C<T: ...T,>, where
C'is a name and, for all 4, T is a type.

e A wildcard-parameterized class type C<Wi...W,>,
where C' is a name and, for all 4, W; is a type argument,
which is one of:

= A type.

* A wildcard ? extends T, super T;, where T, and
T are types. (A wildcard is not a type.)

® A raw class type C, where C is a name.

e A primitive array type p[], where p is a primitive type
name (int, char, etc.)

® A reference array type T'[1, where T' is a type.
e A type variable X, where X is a name.

® An intersectiontype Ty & ... & T,, where, forallz < n,

T; is a type.

® A union type Ty | | T,,where, forall i <n,T;isa

type.

For simplicity, we have ignored primitive types. Gener-
ally, primitives can be handled by implementations sepa-
rately before deferring to the type operations defined here.
We also ignore any distinction between classes and inter-
faces—hereafter, the word “class” means either a class or an
interface.

The names referred to in the definition are assumed to
be globally-unique identifiers. Every class and type variable
declared by a program must have exactly one such name.'

18 This is essentially what is meant by canonical names, as defined in the
JLS. However, that definition does not apply to local classes and interfaces,
nor to type variables.

513

All lists in this definition may be of any length, including
0. The type of a class C' with no declared parameters is the
ground parameterized class type C<> (but may informally be
written C).

Types of nested classes do not appear explicitly in this
definition. Instead, these are just treated like top-level classes.
We follow the convention that a class’s list of parameters in-
cludes all type variables available from outer declarations.!”
For example, if class Foo declares inner class Bar, the ex-
pression

new Foo<String, Object>().new Bar<Cloneable>()
has type
Foo.Bar<String, Object, Cloneable>
In Java code, we would instead write
Foo<String, 0Object>.Bar<Cloneable>

Intersections represent the most general type for which
each of T; is a supertype. If an intersection consists of some
number of interface names, for example, any class that im-
plements all the listed interfaces is a subtype of the intersec-
tion.

Complementing this notion, unions represent the least
general type for which each of 7} is a subtype. Any common
supertype of these types is also a supertype of the union. Be-
cause unions are not currently part of Java, certain operations
involving these types, such as method lookup and erasure,
are defined neither in the JLS nor in this paper. Igarashi and
Nagira [6] develop object-based union types in depth and
present possible definitions for these missing pieces.

In the notation that follows, we maintain the following
conventions:

e X,Y, Z, P, and @ represent type variables (P and)
usually represent declared type parameters).
e (' represents a class name.

o IV represents a type argument—either a type or a wild-
card.

e All other capital letters represent arbitrary types.
To simplify the definition of structurally-recursive func-
tions, we will refer to the types of which a type is directly

composed as its component types. The wildcard bounds of a
wildcard-parameterized class type are among its component

types.
3.1.2 Bounds

Type variables are always bounded—a valid instantiation
of a variable must be a subtype of its upper bound, and a

19 This list does not extend beyond a local scope—if a class is defined
inside a method, its parameters do not include those of the method or of
the enclosing class; the list also excludes variables that are not available
because a class is declared static.

supertype of its lower bound. This information is provided
by the source code, and where it is elided, Object is the
default upper bound and nul1 is the default lower bound.

The functions upper and lower, which map variables to
their bounds, are implicit parameters (for conciseness) to
most of the operations that follow. Additionally, the capture
function may produce new variables, and thus new instances
of upper and lower. These updated bound functions are
implicitly threaded through all subsequent operations on the
types produced by capture.

The expression [X] is shorthand for the application of
upper to X, producing X’s upper bound; similarly, | X |
produces X’s lower bound.

3.1.3 Structural Well-formedness

A type T is structurally well-formed (in the context of a
set of class definitions) if and only if all of its component
types are structurally well-formed and it violates none of the
following assertions:

o Where T = C<T;...T,>, the class named C' exists and
has n type parameters.

o Where T' = C<W; ... W,,>, the class named C exists and
has n type parameters, and there exists some ¢ such that
W; is a wildcard (thus n > 1).

e Where T' = C, the class named C' exists and has at least
one type parameter.

Except where noted, all type operations defined below
assume a domain of structurally well-formed types (this
includes types passed as implicit arguments, such as a
class’s parameters or a variable’s bounds). The safety of
the type system relies on a stronger notion of semantic well-
formedness, defined later in this section. This distinction
is necessary because semantic well-formedness relies on
subtyping and other type operations; we cannot in general
guarantee the semantic well-formedness of the operations’
arguments, and instead must settle for the structural checks
defined here.

3.1.4 Substitution

Substitution instantiates a set of type variables, and is de-
noted o7 or, more explicitly, [Py := Ty ... P, :=T,]|T. The
types involved need not be well-formed. It is defined as the
structurally-recursive application of the following rule:

[P,:=Ty ... P,:=T,|X = T, if, for some i, X =
P;; otherwise [Py =Ty ... P, :=T,]X = X.

By structurally-recursive we mean that, for arbitrary 7',
the substitution is applied to each 7”s component types, and
a new type is constructed from these modified types.

The bounds of a wildcard within a wildcard-parameterized
type are components of that type; the bounds of a variable
are not. Thus, substitution cannot be used directly to instan-
tiate the bounds of a variable.

3.1.5 Wildcard Capture

Wildcard capture is an operation on type arguments (either
types or wildcards, W7 ... W),) and their corresponding type
parameters (P ... P,), producing a globally-unique vari-
able for each wildcard. Each new variable has the same
bounds as the wildcard, combined with the (instantiated)
bounds of the corresponding type parameter.

capture(Wy ... W,, Py ... P,) = Ty ...T,, where, for
all 4:

o If W, is atype, T; = W,.

o If W; is the wildcard ? extends Wi, super W, T; =
Z; for a fresh name Z;, where:

" |—ZZ‘| = Wiu & [Pl::Tl
- |_Z’LJ =Wy | [Pl::T1

Pn = Tn][Pz-|
P, .= T,]| P;].

Capture is principally used to convert a wildcard-param-
eterized class type to a ground parameterized class type.
We use the notation ||[C<W;...W,>|| to represent such a
conversion: where P ... P, are the type parameters of class
Cand capture(Wy ... Wy, Py ... P,) =Ty ...T,, wehave
[|C<Wy ... Wyp>|| = C<Ty ... Tp>.

3.1.6 Direct Supertype

Our subtyping definition relies on determining the direct
supertype of a class type, denoted 7'T. This is defined as
follows:

e Where T' = C<T1...T,>,
» If C = Object, T'T is undefined.
= Else if C declares no supertypes, 77 = Object.

» Else C' declares supertypes S ...S,, and type pa-
rameters Py ... Pysleto =[P =Ty ... Py :=T,);
T =051 & ... & 0Sm.

e Where T' = C<Wy ... Wy>, T = ||C<Wy ... Wy>||T.
e Where T' = C,
= If C declares no supertypes, 7T = Object.

=If C declares supertypes Si...Sn,, 1T =
[S1] & ... & |Sm]-

|S;|, used in the raw case, denotes the erasure of the
given type, as defined in the JLS (4.6).

The direct supertype operation is implicitly parameter-
ized by a class table which contains the supertype declara-
tions defined in the source code. All operations that depend
on direct supertypes are similarly parameterized.

3.1.7 Subtype Relation

The type S is a subtype of T, denoted S <: T, if and only if
this relationship can be demonstrated with the following set
of inference rules:

T <:T (REFLEX)

S<:S/ SI<:T
S<:T

(TRANS)

null <: T (NULL)

Vi < ’I’L,Si %Ti
C<S1...5.> <:C<Ty ... Ty>

(CLASS-EQuiv)

Vi <n,S; €W,
C<S1 ... 8> <: C<Wq ... Wy,>

(CLASS-CONTAIN)

HC<W1 .. Wn>|| < T
C<W1 LW < T

(CLASS-CAPT)

C<Ti...T,> <: C' (CLASS-ERASE)
T <:TT (CLASS-SUP)
pl[] <: Cloneable & Serializable (PRIM-ARR-CLASS)
T[] <:Cloneable & Serializable (ARR-CLASS)

S <: T
—— — (ARR-COVAR)
S[<: T

X <: [X7] (VAR-SUP)
| X | <: X (VAR-SUB)
Ty & ... & T, <: T; (INTER-SUP)

Vign,5<:Ti
S< Ty & ... & Ty,

(INTER-SUB)

Vign,5i<:T
Sl ... | Sn<:T

(UNION-SUP)

T, <:Ty | ... | T, (UNION-SUB)

If S <: T, then equivalently 7" is a supertype of S (de-
noted 7" :> S). Where two types are mutual subtypes of each
other—that is, S <: T and T <: S—we say that they are
equivalent, denoted S = T.%0

The expression S € W, used to express containment by
a type argument (either a type or a wildcard) in CLASS-
CONTAIN, is shorthand for the following:

® Where Wisatype T, S ~T.

e Where W is a wildcard ? extends T, super 7,
S< T, NT; < S.

20We use = in subtyping where Java 5 uses =. This is independent of
the main concerns addressed in this paper, but is included as a convenience
to programmers, since there exist types that are =, and can thus be used
interchangeably, but that are not =.

515

Although it is sound, we do not include the following

distribution rule for intersections and unions:2!

S & (Tl [Tn)<:(S&T1) [(S&Tn)(DIST)

Table 1 reexpresses subtyping algorithmically—for any
pair of types, subtyping is defined to hold if and only if a
rule referenced in the corresponding cell of the table holds
(.S matches one of the cases in the left column; 7" matches
one of the cases in the top row. A “-” in the table represents
a result that is trivially false). The correspondence between
the above declarative rules and the algorithmic rules in Table
1 is expressed formally in Section 3.1.9.

Note that certain rules may be applicable to an S—T" pair
but not appear in the corresponding table cell. For example,
REFLEX is frequently elided; VAR-SUB* is not used where
S is a union. In such cases, the elided rule is provably redun-
dant. On the other hand, there are times (like the variable—
variable case) where every applicable rule must be tested.

Implementing a subtyping algorithm in terms of these
algorithmic rules is a straightforward process. In order to
guarantee termination, however, we require the following of
the subtyping arguments in addition to the assumption that
the types be structurally well-formed:??

® No variable is bounded by itself—that is, [X] # X and
X+ £ X,

e The class table is acyclic: C<Ty ... T,,>11 # C<T{ ... T.>
for any choice of T ... T),.

¢ The class table does not exhibit expansive inheritance, as
defined by Kennedy and Pierce [7].

Unlike the JLS, we do not prohibit multiple-instantiation
inheritance: we might have C<T; ... T,,>]" = D<S; ... Spm>
and C<Ty...T,>1™ D<Sy...S.,> where, for some 1,
S; # Si.

Even with these limitations, certain subtyping invocations
may depend on themselves (Kennedy and Pierce [7] provide
some examples). So the algorithm must keep track of “in-
process” invocations and terminate (negatively) whenever a
subtyping invocation depends on itself.

3.1.8 Bounds Checking

We use inBounds to assert that type arguments (77 ...T,)
do not violate the bound assertions of their corresponding
type parameters (P ... P,).

inBounds(Ty ... T,, Py ...P,) is defined for struc-
turally well-formed types as follows:

e For all 7, T; <:[P1 =T ... P, :TnH—Pz—I
e For all 7, [Pl = Tl Pn = Tn]LPlJ <:Ti.

21 A distribution rule could (and ought to) be added as an extension to the
current presentation, although defining a straightforward subtyping algo-
rithm under such a rule requires tedious normalization steps.

22 The use of transitive closure here is intended to also permit the decompo-
sition of intersection and union types.

T:
null Ci<Ty ... Tyn> Ci<Wy ... Wi> Cy
null true true true true
C.<Si .. S5) CrLAss-EqQuly, CLASS-CONTAIN, CLASS-ERASE*,
SEPL e om CLASS-SUP* CLASS-SUP* CLASS-SUP*
Co<Wy ... Wpy> - CLASS-CAPT* CLASS-CAPT* CLASS-CAPT*
S Cs - CLASS-SUp* CLASS-Sup* REFLEX, CLASS-SUP*
ps (1] - PRIM-ARR-CLASS* PRIM-ARR-CLASS* PRIM-ARR-CLASS*
S’ - ARR-CLASS* ARR-CLASS* ARR-CLASS*
X VAR-SUP* VAR-SUP* VAR-SUP* VAR-SUP*
S1 & ... & S, | INTER-SUP* INTER-SUP* INTER-SUP* INTER-SUP*
S1 | | S, | UNION-SUP UNION-SUP UNION-SUP UNION-SUP
T:
pt[] T/[] Xt Ty & ... & T\, Ti | ... | T
null true true true true true
Cs<S1...5.> - - VAR-SUB* INTER-SUB UNION-SUB*
Cs<Wry ... Wp> - - VAR-SUB* INTER-SUB UNION-SUB*
C - - VAR-SUB* INTER-SUB UNION-SUB*
ps[] REFLEX - VAR-SUB* INTER-SUB UNION-SUB*
| - ARR-COVAR VAR-SUB* INTER-SUB UNION-SUB*
S: k *
X, | VAR-SuUP* VAR-SUP* REFLEX, VAR-SUP*, INTER-SUB VAR-SUP*,
VAR-SUB* UNION-SUB*
_ £
S| & & S, | INTER-SUP* INTER-SUP* INTER-SUP¥, INTER-SUB INTER-SUP*
VAR-SUB*
S| | S, | UNION-SUP UNION-SUP UNION-SUP UNION-SUP UNION-SUP
T <:T (REFLEX)
Vi, S; = T; Vi, S; € W;

(CLASS-EQUIV) (CLASS-CONTAIN)

C<S1...5.><: C<Ty ... Ty,> C<S1...5.> <: C<Wy ... Wp>

HC<W1 . Wn>|| < T

C<Wy ... Wp> <: T

Cloneable & Serializable <: 7’

(CLASS-CAPT¥*)

C<:T ST<:T

(CLASS-SUP¥*)

C<S1...5n> < T

(PRIM-ARR-CLASS*)

(CLASS-ERASE®)
S <: T

Cloneable & Serializable <: 7'

(ARR-CLASS*)

ps[] < T S < T
S < T [XW < T S <: LXtJ
—— — (ARR-COVAR) — (VAR-SUP¥) ———— (VAR-SUB¥)
SO <:T0 XS < T S<:Xt
37;, Sl < T Vi,S<:Ti

Sl & ... & Sn<:T

Vi,Si<:T
Sl | | Sn<:T

(INTER-SUP*)

(UNION-SUP)

(INTER-SUB)

S<:T1 & ... & Tn

E'Z.,S<:ﬂ

S<:T1 |

(UNION-SUB*)

| T

Table 1. Algorithmic rules for subtyping

516

3.1.9 Semantic Well-formedness

In order to make useful assertions about the correctness of
the above operations, a stronger notion of well-formedness
is needed. Thus, a type is semantically well-formed (in the
context of a set of class definitions) if and only if it is struc-
turally well-formed, all of its component types are semanti-
cally well-formed, and it violates none of the following as-
sertions:

e Where T' = C<Ti...T,>, and class C has parameters
Py...P,,inBounds(Ty ... Ty, Py ... Py).

e Where T' = C<W1 ... Wy>,
cally well-formed.

e Where T = X, | X | <: [X].

C<Wji ... W,>|| is semanti-

“Well-formed,” when used without qualification, refers
to semantic well-formedness. In the context of a full lan-
guage definition, all types expressed in code should be well-
formed, and type analysis must only produce new types that
are well-formed.

Note the use of capture in validating the arguments of a
wildcard-parameterized class type. It is tempting to try to
avoid capture conversion here, and in many situations its use
can be eliminated. However, in general, we must use capture
to insure two important conditions: first, that the variables
generated by capture are not malformed—each variable’s
lower bound is a subtype of its upper bound; and second, that
non-wildcard arguments are within their bounds. Bounds in
both cases may be defined in terms of capture variables and
other type arguments, so the bounds must be instantiated
before they are checked.?

Given this stronger well-formedness notion, we can make
a few important assertions about substitution, wildcard cap-
ture, and subtyping. (We do not provide in this paper proofs
for these assertions. They do, however, provide a standard
by which to informally verify correctness.)

Substitution. The notion of well-formedness allows us
to make the following definition and assertion regarding
substitution:

Definition. Aninvocation [Py :=T; ... P, :=T,|T is well-
formed if and only if T, Py ... P,, and Ty ... T, are well-
Sformed and inBounds(Ty ... T, Py ... P,).

Theorem. Where the substitution invocation o1 is well-
formed, its result is also well-formed.

The following lemmas help to demonstrate this result:

Lemma. Where the substitution invocations are well-formed,
Ty <: Ty = 0Ty <: 05,

Lemma. Where the substitution invocations are well-formed
and the parameters Q1 . .. Q. do not have bounds that in-

23 We do not need to check the in Bounds condition for capture variables,
since these variables are guaranteed to be in bounds, but we don’t compli-
cate the definition with this fact here.

517

volve the parameters of o, inBounds(S1 ... Sm, Q1 - .. Qm)
= inBounds(cSy...05m,Q1 ... Qm)-

Wildcard capture. In general, capture may produce mal-
formed types from well-formed arguments—this is why the
rules for semantic well-formedness check that the type is
well-formed after capture. We can, however, make the fol-
lowing claim:

Theorem. Where Wy ... W, are all wildcards and the types
capture(Wy ... Wy, Py ... P,) are well-formed,

inBounds(capture(Wy ... Wy, Py ... P,),Py... P,)

Subtyping. Well-formedness allows us to make the fol-
lowing soundness and completeness claim about the subtyp-
ing algorithm:

Theorem. Where S, T, and all types in the implicit environ-
ment (variable bounds and a class table) are well-formed,
the assertion S <:T is true according to algorithmic sub-
typing (defined in Table 1) if and only if it is derivable by the
declarative subtyping inference rules.

3.2 Type Argument Inference
3.2.1 Overview

The type argument inference algorithm produces an instan-
tiation o = [Py := Ty ... P, :=T,] of a set of method type
parameters for a specific call site. The result is a function of
the types of the formal parameters (£ ... F};,), the types of
the invocation’s arguments (A . .. A,,), the method’s return
type (R), and the type expected in the call site’s context (E).
An inference result must satisfy the following:

V’L',Aq; <: O'E
oR <: E
inBounds(Ty ... T,, Py ... P,)

We proceed by first producing a set of bounding con-
straints satisfying first two conditions, and then choosing
types that both meet these constraints and fall within bounds
specified by P; ... P,. The algorithm is sound, but not com-
plete: the results will always satisfy the three above con-
straints, but where P, ... P,, are referenced within their own
bounds, it may fail to produce a result where one exists.?* In
all other cases, it is complete.

Bounding constraints on the type arguments are deter-
mined by two functions, <:; and :>-. A <:» I’ produces a
minimal set of constraints on 77 ...T,, required to satisfy
A <:0F; A:>; F similarly produces the constraints satis-
fying A :> o F. The constraints are expressed as logical for-
mulas, combined and normalized with the operations A
and V.r as outlined below. For convenience, a third infer-
ence function, <, is a shortcut for Acg(A <:2 F, A > F).

24 See Section 2.4.4 for discussion regarding this special case.

3.2.2 Constraint Formulas

A constraint formula is a formula in first-order logic ex-
pressing upper and lower bounds on our choices for types
Ty ...T,. Where a certain instantiation contains types that
fall within the bounds expressed by a formula ¢, that instan-
tation satisfies the formula: o |= ¢. We also use this notation
for implication: ¢ = p means Vo, (0 = ¢) = (o = p).

In the inference algorithm, we restrict the form of all
constraint formulas as follows, modeled after disjunctive
normal form:

m
\/ lel < T <: leu VAN Tnjl <: T, <: Tnju

j=1

The value of m may be any natural number. We will use
false as an abbreviation for the formula in which m = 0. If
m = 1, the formula is a simple constraint formula; we use
true to represent the simple formula

null <: 7} <: Object A ... Anull <: T, <: Object

Finally, an expression such as C <: 17 <: D is taken as an ab-
breviation for a simple constraint formula in which the given
parameter has the specified bounds, and all other parameters
are bounded by the unconstraining null and Object.

It will be necessary to produce conjunctions and disjunc-
tions of constraint formulas. The operations Acy and Vg
serve this purpose, while maintaining the invariant normal-
ized form. These operations, defined below, are sound and
complete with respect to simple conjunction and disjunction:

Lemma. o |= (¢ A p) ifand only if o |= Ncr (9, p).
Lemma. o = (¢ V p) ifand only if 0 |= Veyr (9, p).
Conjunction. Let p; ... p,, be simple constraint formu-
las. Let Tj;; refer to the lower bound of T} in p;, and Tjj,,
refer to the upper bound. Then Ac¢(p1 ... pm) has value

NT 1

i=1

| Timl) < T; < (Tilu & ... & Timu)
The construction of unions and intersections here is required
to eliminate redundant entries: String & Object reduces to
String, for example. If the result is unsatisfiable—that is,
for some 7;, the lower bound is not a subtype of the upper
bound—it is simplified to false. Note also that if any of p;
is true (and m > 1), that formula is automatically discarded
(because its bounds are always redundant).

In the general case—where the arguments ¢ . .. ¢, are
not simple—we define A,y by merging each possible com-
bination of simple constraint formulas. In this case, each
of of ¢; ... ¢, can be treated as a ser of simple formulas;
the cross product of these sets, ¢1 X ... X ¢y, produces k
m-tuples of the form (p1 ... p,). Applying Acy to each of
these tuples (as defined above for simple formulas), we pro-
duce the set of simple formulas pf ... pj.. Then we have

/\cf(¢1 s (bm) = ch(pll s p;e)

518

Again, we note that if any of ¢; is true, that set will be
discarded; if any of ¢; is false, the result will also be false
(because k = 0).

Disjunction. The V .5 operation would be correct to sim-
ply concatenate its arguments together. However, we wish to
ensure that all formulas we produce are minimal. We can use
the following to help eliminate redundant simple formulas:

Theorem. For simple constraint formulas p1 and ps, p1 |E
p2 if and only if, for all i, T;1,, <: Tio, and Ty > Tioy.

Now, we define Vg (41 ... @) as follows. Again treat-
ing these formulas as sets of simple formulas, let p; . .. pi be
the union ¢1 U ... U ¢,,,. We can compute a minimal equiva-
lent subset of p1 ... pg, p} . .. p},, where minimal means that
Vi, 37, pi = p (the intuition is that if one formula implies
another, the first is more constraining on o; the only way
a choice for o will satisfy neither formula is if it does not
satisfy the less constraining one). Now we have

k/
Ver(61-..6m) = \/ 4
i=1

Again note that the trivial cases are handled correctly: if any
of ¢1... ¢ is false, it will be ignored; if any of ¢ ... ¢y,
is true, it will be the only member of the minimal subset,
and the result will be true.

3.2.3 Subtype Inference

The invocation A <:. F'|, produces a constraint formula
supporting the assumption that A <: o F. The parameter p
is a set of previous invocations of <:» and :>-. For brevity,
we do not express p explicitly; it is always empty on exter-
nal invocations, and wherever one of these operations is re-
cursively invoked (including mutual recursion between <:-,
:>-, and =2¢), the previous invocation is accumulated in .

e If the invocation A <:» F' € p, the result is false.
e Else if, for some i, I' = P;, theresultis A <: T; <: Object.

e Else if F involves none of P, ... P,, the resultis A <: I’
(treating the boolean result of <: as a trivial constraint
formula).

e Otherwise, the result is given in Table 2. (A matches one
of the cases in the left column; F' matches one of the
cases in the top row. A “-” in the table represents the
formula false.)

Compare Table 2 to Table 1. Notice that the rules for
inference follow directly from subtyping. The only changes
replace boolean operations with their analogs: <: becomes
<:¢; “and” and “or” become Ay and Vg.

3.2.4 Supertype Inference

The invocation A :>. F'|, produces a constraint formula
supporting the assumption that A :> o F. The parameter p
is as described in the previous section.

F:
Cp<Fy ... Fp> Cp<Wi .. . Wi F'l
null true true true
Cu<Ar ... An> (1] 2] ;
Co<W1 ... Wp> ||AH <:7 F ||A|| <:7 F -
Ca AT <:7 F AT <:? F -
A: ps [[4] [4] -
ATl [4] [4] A < F’
Xa |—A-‘ <:i7 F [A-| <:7 F |—A-| <:7 F
AL & ... & A, ch(Ai <:7 F) \/cf(Ai <:7 F) vcf(Ai <:i7 F)
AL | ... | A, /\cf(Az <:i7 F) /\cf(Az <:7 F) /\cf(Az <:7 F)
F:
Xf Fr&...&8F, | ... | Fn
null true true true
Ca<A1 AN An> A <:7 LFJ /\cf(A <:7 Fz) \/cf(A <:7 Fz)
Co<Wy ... Wy> A < I_FJ /\cf(A <iz Fi) ch(A <iz Fi)
Ca A <:7 I_FJ /\cf(A <:7 Fl) ch(A <:7 Fz)
AZ Ps [] A <:7 LFJ /\Cf(A <:7 Fz) ch(A <:7 E)
A/ [] A <:7 LFJ /\Cf(A <:7 Fz) ch(A <:7 Fl)
Xa [5] /\cf<A <i7 Fz) [6]
AL & ... & A, [7] /\cf(A <:i7 FZ') ch(A <i7 Fi)
Al | A, /\cf(Ai <:i7 F) /\cf(Ai <:i7 F) /\cf(Ai iz F)
[1]: There are two cases:
o IfC, = Cf, /\cf(Al o, Fi,. . A, 22 Fn)

e Otherwise, AT <:» F
[2]: There are two cases:
e If Cy = Cf, Neg(é1 ... ¢yn) Where, for all i:
= If W, is atype, ¢; = A; =, W,

w If Wi is a wildcard ? extends Fiy super Fi, ¢z = /\cf(Az <:7 Fiua Ai > le)

e Otherwise, AT <:» F
[4]: Cloneable & Serializable <:» F’
[5]: Vep([A] <2 FL A <2 | F))
[6] vcf([A—l <:? F,A <:? F1 LA <:7 Fm)
[7] ch(Al <:7 F.. An <:7 F,A <:7 LFJ)

Table 2. Rules for subtype inference

e If the invocation A :>. F' € p, the result is false.

e If, for some i, I' = P;, the resultis null <: T} <: A.

o If F' involves none of P;...P,, the result is F <: A
(treating the boolean result of <: as a trivial constraint
formula).

e Otherwise, the result is given in Table 3. (A matches one
of the cases in the left column; F' matches one of the

cases in the top row. A “-” in the table represents the
formula false.)

Similarly to Table 2, Table 3 follows directly from the
subtyping rules (this is slightly less apparent, because the ta-

519

ble has been transposed, allowing the “upper” type to appear
on the left).

3.2.5 Inference Algorithm

Building on these definitions, we now describe the full algo-
rithm for type argument inference.

The first two conditions to be satisfied by the instantiation
o—that the invocation’s arguments are subtypes of their
corresponding formal parameters, and that the return type
is a subtype of the expected type—are described by the
formula

¢ = /\cf(Al <:7 Fl . Am <:? Fm,E >e R)

F:
Cp<Fy ... Fp> Cp<Wi .. . Wi F'l
null - - -
Co<Ay ... Ap> [1] A, ||F| [4]
Ca<Wiy ... Wy> 2] A>q ||Fl [4]
C, [3] A >, ||F|| (4]
A: ps[] - - -
Al - - A >, F'
Xa LAJ >0 F LAJ >0 F LAJ >0 F
AL & ... & A, /\cf(Ai > F) /\cf(Ai >0 F) /\cf(Ai > F)
A1 | . | An ch(Az >e F) ch(Al >e F) vcf(Az >e F)
F:
X FL&...&Fy F | ... | Fp
null A >, ’VFW ch(A >q Fl) /\Cf(A >e Fl)
CE<A1 . An> A >e (.Frl \/cf(A >e Fz) /\cf(A >0 Fz)
Co<Wy ... Wp> A >a ’—F—l ch(A :>e Fz) /\cf(A >e Fz)
Ca A >q ’—F1 ch(A > Fz) /\cf(A >2 Fz)
A: ps [A >, [F] Vep(A>e Fi) Nep(Ai>e F)
A/ [] A >0 ’VFW ch(A >0 Fl) /\Cf(A >0 Fl)
Xa [5] [7] /\Cf(A >7 Fz)
AL & ... & A, /\cf(Ai i>7 F) /\cf(Ai >0 F) /\cf(A >0 Fi)
Ay | An [6] ch(A > Fz) /\cf(A > Fz)
[1]: There are two cases:
o IfC, = Cf, /\cf(Al o, Fi,. . A, 22 Fn)

e Otherwise, A :>, F
[2]: There are two cases:
e If Cy = Cf, Neg(é1 ... ¢yn) Where, for all i:
= If W, is atype, ¢p; = W; =, F;

= If Wi is a wildcard ? extends A, super A, ¢i = /\cf(Aiu > Fi»Ail <:7 Fz)

e Otherwise, A :>» FT
[3]: If C, = CY, true; otherwise, A :>» F1
[4]: A :>; Cloneable & Serializable
51 Vey (A 152 [F1,|A] > F)
[6] ch(A > |—FW,A1 >q F.. An >7 F)
[7] \/cf(A > F1 LA > Fm, LAJ > F)

Table 3. Rules for supertype inference

Given the formula ¢, we must choose types for 77 ... 7T,
satisfying the bounds of the corresponding parameters:
inBounds(Ty ... Ty, Py ... Py).

We first choose values for T . ..T;, based on the inferred
lower bounds: for each conjunction in ¢ of the form

Tll <:T]_ <:T]_u/\ /\Tnl <:Tn <:Tnu

we choose T; = T;;. If this choice satisfies the inBounds
condition, that is the result. Otherwise, the next disjunct in ¢
is used.

If no solution is found using the inferred lower bounds,
we instead use capture to produce the results. If we treat
each assertion Tj; <: T; <: T}, in a constraint formula as a

520

wildcard—7? extends T;, super T;—we can represent ¢
as follows:

Qf): \/le...an
j=1
To satisfy the bounds, we let

Ty ... T, = capture(Why ... Wy1,Pr ... P)

If the resulting capture variables are well-formed, these are
the choice for 7} . .. T,,. Otherwise, the next disjunct in ¢ is
used. If no results are found in this way, the algorithm reports
failure.

Note that there is a nondeterminacy present in the above
algorithm: where more than one simple constraint formula

in the final constraints is satisfiable, the choice of which for-
mula to use depends on the order in which they are enumer-
ated. This nondeterminacy is inherent in the inference prob-
lem: if the constraints on 77 can be satisfied with either 77 =
String or T} = Integer (but not with 77 = null), the algo-
rithm must arbitrarily choose one or the other. Clearly, such
nondeterminacy must be avoided in a full specification—two
different implementations must not choose different types
for T . To do so, the specification would need to extend the
treatment of formula operations in terms of sets to preserve
a well-defined order of elements.

3.2.6 Correctness and Complexity

We do not make a formal analysis of the correctness or
complexity of the inference algorithm here. We do, however,
state some useful properties that we expect to hold and
informally discuss the algorithm’s efficiency.

First, termination is closely tied to the termination of
subtyping.

Lemma. The type argument inference algorithm terminates
if the corresponding subtyping algorithm terminates.

The correctness of the algorithm is also closely tied to that
of subtyping.

Lemma. The results of <:» and :>- are sound and complete
with respect to the subtyping rules: o = A <:» F if and only
if 0 A <: o F (and the equivalent for :>-).

Given this assertion, soundness is straightforward.

Theorem. If type argument inference produces a result o =
[Py:=Ty ... P,:=T,)], the corresponding method invoca-
tion is well-typed (as is the enclosing expression, where E is
defined and the expression is otherwise correct):

L4 Vi,Ai <:0F;
e oR <: E
e inBounds(Ty ... T, Py ... P,)

The completeness of <:-. and :>- is similarly important in
understanding the algorithm’s limitations: the only source of
incompleteness is in choosing an instantiation that satisfies
both the inferred and the declared bounds. In the typical,
simple case in which parameter bounds are not recursive
or interdependent, the algorithm can be expected to produce
valid results when they exist.

To address efficiency, note that the dominating source of
complexity (both in time and space) is in the manipulation
of constraint formulas: Ay, in particular, calculates a cross
product that may produce up to m X n disjuncts when given
arguments with m and n disjuncts, respectively. Union and
intersection types, as constructed by Ay, also have the po-
tential to grow to intractable sizes. However, these are con-
sistently minimized to eliminate redundancy; and, as noted
in Section 2.4.2, we expect the sizes of the algorithm’s inputs
to be quite small in practice.

521

3.2.7 Special Cases

When the above inference algorithm is used in the context
of the full Java language, a variety of subtleties must be
addressed:

e I/ may be undefined, or R may be void. Then there are
no constraints on the return type, and we do not include
FE :>: R in the result.

e The types involved may be primitives. The inference op-
erations can be easily extended to handle both primitive
subtyping and reference subtyping, as appropriate.

e Boxing or unboxing of the arguments or return value
may be allowed. Determining whether these conversions
should occur is always possible without knowing o. So
we can assume here that A; ... A, and F represent the
types after any necessary conversions.

e Variable-length arguments may be used. In this case,
the method signature provides formal parameter types
Fy ... F}, and Fj is the array type F;[1. The constraint
formula calculation must then contain A; <:» Fy,...,
Ajfl <:i7 ijl, and, if m > j, AJ <:7 F;,...,
Am <:7 F]/

e The type parameters of a class enclosing the method
declaration may appear in F ... F},, R, or the bounds of
P, ... P,. Substitution can be used to remove these from
Fy ... F,, and R; but in order to handle any references
in P,...P,, we must define new variables P| ... P
with bounds defined by the class parameter instantiations.
Alternately, the class parameters can be included in the
list of parameters to be “inferred,” but be constrained so
that the only valid choice to instantiate a class parameter
is the one that has already been provided.

4. Backwards Compatibility

Enhancements to the Java language are generally made in a
backwards-compatible fashion: the revised language is a su-
perset of the previous version, and the behavior of previous
programs is preserved. Unfortunately, changes to the current
specification that affect join and type argument inference
are almost impossible to make without rendering some pro-
grams incorrect, and changing the behavior of others.

Consider, for example, the signature of the method
java.util.Arrays.asList:

static <T> List<T> asList(T... ts)

If this method is invoked in a context in which the expected
type E is unknown—as an argument to another method,
for example—invariant subtyping can easily cause a cor-
rect program to become incorrect with only slight modifi-
cations to the inference algorithm. That is, where the orig-
inal algorithm produces T) = U and the context of the
invocation requires a List<U>, an algorithm that produces

a better but different type V' will lead to an assertion that
List<V> <: List<U>, which is false.

More troubling is the possibility that a change to join or
the inference algorithm, while not invalidating a certain pre-
viously well-formed program, will change the meaning of
that program. This is possible because overloading resolu-
tion is dependent on the types produced by type checking.
The value of the test method below, for example, depends
on the sophistication of the inference algorithm used:

interface NumBox<T extends Number> {
T get();

}

static <T> T unwrap(NumBox<? extends T> arg) {
return arg.get();

}
static int f(Object o) { returm 0; }
static int f(Number n) { return 1; }

static int test(NumBox<?> arg) {
return f(unwrap(arg));

}

A system with an inference algorithm that uses cap-
ture (or otherwise incorporates the declared bounds of a
wildcard’s corresponding parameter) can determine that the
f (Number) function is applicable in the body of test; one
that does not will instead resolve £ to the f(0Object) func-
tion.

Despite these incompatibilities, the bugs in the Java 5
specification (as described in Section 2.3), provide strong
motivation for fixing these operations—even if the addi-
tional shortcomings of the inference algorithm are not ad-
dressed. So we are left with a problem: do we go to great
lengths to enforce backwards compatibility with broken op-
erations (perhaps by defining two inference algorithms, and
using the second only when the first is unsuccessful), or relax
this requirement in order to correct and clean up the specifi-
cation? Complicating this question is the fact that the javac
compiler, and presumably others, is not entirely consistent
with the specification, especially in areas where the specifi-
cation is incorrect. So it’s not clear exactly which language
any changes should seek to be backwards-compatible with.

We believe backwards-compatibility concerns can be
mitigated in two ways. First, a new source-language com-
piler flag can be introduced, as was done in Java 1.4 when
the assert keyword was added to the language. Second,
a source-to-source tool can be developed that implements
both the old and new inference algorithms, and inserts casts
or explicit type arguments as necessary wherever the two
conflict. In fact, because most programmers do not heav-
ily exercise the language’s generic features, it’s quite likely
problems would be rare enough that this diagnostic tool need
not make any file modifications—it could simply identify a
handful of problem sites and leave programmers to manually
fix them.

522

Two properties of the algorithm specified in this paper
soften the impact of the language change, minimizing the
number of correct programs that would be rendered incorrect
by the new system:

e Because type argument inference is defined in terms of
the expected type FE, changes to inference will rarely
be problematic in contexts in which E is known (this
includes assignments and return statements).

e Where inference produces a different result than the Java
5 algorithm, the new result is usually more specific; in
practice, this often safe, since type variables in method
return types are frequently not nested.

5. Historical Evolution and Related Work

Algorithms for local type argument inference in languages
with subtyping and bounded quantification was first ex-
plored by Cardelli [2] and later Pierce and Turner [9; 8].
Pierce and Turner noted the difficulty of performing infer-
ence for type parameters with interdependent bounds [8].

Type variables, parameterized types, and type argument
inference in Java 5 were incorporated from the GJ language
[1], an extension to Java designed to support generic pro-
gramming. The original specification for GJ describes most
of the features of Java 5, with the exception of wildcards and
intersection types.

Wildcards arose out of research to extend GJ and sim-
ilar languages with covariant and contravariant subtyping.
Thorup and Torgersen [11] initially proposed what has be-
come known as use-site covariance—allowing programmers
to specify when a parameterized type is instantiated that a
particular type parameter should be covariant. Igarashi and
Viroli [5] extended this notion to include contravariance and
established a connection to bounded existential types. Their
work requires support for lower bounds on type variables,
though these bounds are not expressible in type variable dec-
larations. A joint project between the University of Aarhus
and Sun Microsystems [12] extended these ideas and merged
them with the rest of the Java language, describing in partic-
ular how wildcards affect type operations like type argument
inference. Wildcard capture was first presented in a paper
summarizing this project.

The 3rd edition of the Java Language Specification [3]
enhanced this prior work in a number of ways. Wildcard cap-
ture was refined to produce variables whose bounds include
both those of the wildcard and those of the corresponding
type parameter. This enhancement produces a more useful
capture variable, and may have been deemed necessary in
order to guarantee that types produced by capture are well-
formed (that is, the capture variable is within the declared
parameter’s bound). It has a number of interesting side ef-
fects: first, intersection types are required to express the
bound of some capture variables; second, a capture variable
may have both an upper and a lower bound; and third, a cap-

ture variable may appear in its own upper bound. Perhaps
spurred by the requirement for intersections produced by
capture, the language was also extended to allow intersection
types as the bounds of declared type variables. In addition,
the join operation (known as lub in the JLS) was defined to
produce recursive types, an approach that was avoided in the
Aarhus—Sun paper due to its complexity [12].

Torgersen, Ernst, and Hansen [13] complemented the
specification with a formal discussion of wildcards as im-
plemented in Java, and presented a core calculus extending
Featherweight GJ [4] with wildcards. Their calculus, for the
sake of generality, allows arbitrary combinations of upper
and lower bounds on both declared type variables and wild-
cards. The paper, however, does not discuss how such gener-
ality might affect the full Java language, and type argument
inference in particular; nor does it prove important prop-
erties of the calculus, such as type soundness or subtyping
decidability.

In fact, Kennedy and Pierce [7] have demonstrated the
undecidability of subtyping algorithms (and, by extension,
subtype inference algorithms) for some object-oriented type
systems that, like Java 5, contain contravariance. Their work
is inconclusive on the question of whether Java 5 subtyp-
ing is decidable, but raises the possibility that it is not. A
problem arises when recursive invocations of a subtyping al-
gorithm are parameterized by increasingly larger types. For-
tunately, Kennedy and Pierce’s work suggests a straightfor-
ward solution that can guarantee decidability in their simpli-
fied calculus: the class hierarchy must not exhibit a property
termed expansive inheritance. Class declarations of this kind
can be readily detected, and seem to serve no practical use,
so it is reasonable to prohibit them. We follow this strategy
here; while their decidability results are not proven to extend
to the full Java language, it seems likely that they will.

Finally, this paper makes use of union types as a comple-
ment to intersections. These are explored in the context of
object-oriented languages by Igarashi and Nagira [6]. While
we do not argue here for first-class support for such types
in the language—doing so would conflict with our goal of
minimizing language changes—we do allow type analysis
to produce them, and Igarashi and Nagira’s argument for
full language support is worthy of consideration. Their work
also suggests how the members—fields, methods, and nested
classes—of union types might be determined, a topic which
we do not explore here.?

6. Conclusion

We have highlighted a number of bugs and limitations in the
Java 5 type inference algorithm, and presented an improved
version of the algorithm. The improved algorithm is sound,

25 Igarashi and Nagira interpret union types in a manner reminiscent of
structural subtyping: the union contains a certain method if a method with
that name is declared in each union element. If preferred, however, a more
nominal approach could easily be developed.

523

and is able to produce correct results in a variety of cases in
which the Java 5 algorithm falls short. It also minimizes the
assumptions made by the algorithm, thus making possible
extensions to the language like first-class intersection types
and lower-bounded type variables.

The discussion of backwards compatibility in Section 4
addresses how changes to the language might be put into
practice. Given the number of flaws in the current specifica-
tion, an update to the inference algorithm seems inevitable,
and that update will almost certainly violate backwards com-
patibility. Thus, addressing these bugs offers a good oppor-
tunity to make higher-level decisions about the inference al-
gorithm, determining whether some non-essential improve-
ments might also be made.

It would be useful to guide decisions about changes to
the inference algorithm with an experimental study of their
practical impact. An analysis tool might demonstrate, for
example, that nearly all legacy Java programs would not
be adversely affected by backwards compatibility problems
under the improved algorithm proposed here.

The problems encountered when handling recursively-
bounded type parameters provide another opportunity for
future work. If a universal solution can be developed, it
will be possible to create a locally-complete type argument
inference algorithm.

The type system described in this paper has been im-
plemented as a component of the DrJava IDE’s interactive
interpreter [14]. This updated interpreter provides a useful
demonstration of the improved inference algorithm.

A. Code Samples
Al

// This compiles in javac (1.5 & 1.6) without war-

// ning but throws a ClassCastException at runtime.

<T> List<? super T> id(List<? super T> arg) {
return arg;

}

void test() {
List<Float> 1n =
List<?> 1 = 1n;
List<? super String> ls =
1s.add("hi");
Float £ = 1n.get(0);

}

javac Inference Failure with Wildcards

new LinkedList<Float>();

id(1);

A.2 First-class Intersections

// For brevity, Comparable is abbreviated Cm
public class SafeTreeSet<T> {
private TreeSet<T & Cm<? super T>> set;
public SafeTreeSet() {
set = new TreeSet<T & Cm<? super T>>();
}
public void add(T & Cm<? super T> elt) {
set.add(elt);
}
public void addAll(Iterable<? extends T &

Cm<? super T>> elts) {
for (T & Cm<? super T> elt : elts) {
set.add(elt);
}
}
public Iterator<? extends T> iterator() {
return colls.iterator();

}

A.3 Inference with Recursive Bounds

interface RecurBox<T extends RecurBox<T>> {
T get();
void set(T val);
}
interface Foo extends RecurBox<Foo> { }
// inherited: Foo get();
}
interface Bar extends Foo, Cloneable {
// inherited: Foo get();
}
<S extends RecurBox<S>, T extends S & Cloneable>
S unwrap(T arg) {
return arg.get();

}

int typeToVal(Object o) { return
int typeToVal(Foo f) { return 1;
int typeToVal(Bar b) { return 2;
void test(Bar b) {
// For unwrap(b), S and T must
// T <: S <: RecurBox<S>
// Bar <: T <: S & Cloneable
assert typeToVal(unwrap(b)) == 1;

SRS

satisfy:

A4 Existential Open with a Lower Bound

// Library code:
interface Processor<T> {
/** Do some processing; true if successful. */
boolean process(T arg);
}
interface ProcQueue<T>
extends Queue<Processor<T>> { }

// Application code:

/** Pass each of vals to a Processor in the queue;
* if processing a value is successful, increment
* it. After all processing is complete, enqueue
* the successful processors.
*/

static void runInts(ProcQueue<? super Integer> q,

int[] vals) {
return runIntsHelper(q, vals);

}

524

static <T super Integer>
void runIntsHelper (ProcQueue<T> q, int[] vs) {
List<Processor<T>> keep =
new LinkedList<Processor<T>>();
for (int i = 0; i < vs.length; i++) {
Processor<T> p = queue.remove();
if (p.process(vs[i])) { keep.add(p); vs[il++; }
}
queue.addAll (successful);
}

References

[1] Gilad Bracha, Martin Odersky, David Stoutamire, & Philip
Wadler. Making the Future Safe for the Past: Adding Gener-
icity to the Java Programming Language. OOPSLA, 1998.

[2] Luca Cardelli. An Implementation of F .. Research report 97,
DEC Systems Research Center, 1993.

[3] James Gosling, Bill Joy, Guy Steele, & Gilad Bracha. The
Java Language Specification, Third Edition. 2005.

[4] Atshushi Igarashi, Benjamin Pierce, & Philip Wadler. Feath-
erweight Java: A Minimal Core Calculus for Java and GJ.
OOPSLA, 1999.

[5] Atsushi Igarashi & Mirko Viroli. On Variance-Based Subtyp-
ing for Parameteric Types. ECOOP, 2002.

[6] Atsushi Igarashi & Hideshi Nagira. Union Types for Object-
Oriented Programming. Journal of Object Technology, vol. 6,
no. 2, February 2007.

[7] Andrew J. Kennedy & Benjamin C. Pierce. On Decidability
of Nominal Subtyping with Variance. FOOL/WOOD, 2007.

[8] Benjamin C. Pierce & David N. Turner. Local Type Argu-
ment Synthesis with Bounded Quantification. Technical report
TR495, Indiana University, 1997.

[9] Benjamin C. Pierce & David N. Turner. Local Type Inference.
POPL, 1998.

[10] Daniel Smith. Completing the Java Type System. Master’s
thesis, Rice University, 2007.

[11] Kresten Krab Thorup & Mads Torgersen. Unifying Generic-
ity: Combining the Benefits of Virtual Types and Parameter-
ized Classes. Lecture Notes in Computer Science, 1999.

[12] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter
von der Ahé, Gilad Bracha, & Neal Gafter. Adding Wildcards
to the Java Programming Language. SAC, 2004.

[13] Mads Torgersen, Erik Ernst, & Christian Plesner Hansen. Wild
FJ. FOOL, 2005.

[14] DrJava IDE. http://drjava.org.
[15] Java Community Process. http://jcp.org.

[16] “Type variables should have lower/super bounds.” Java
Request for Enhancement. http://bugs.sun.com/view_
bug.do?bug_id=5052956.

[17] “Please introduce a name for the ‘null’ type.” Java Request
for Enhancement. http://bugs.sun.com/view_bug.do?
bug_id=5060259.

[18] “Multiply-bounded reference type expressions.” Java Request
for Enhancement. http://bugs.sun.com/view_bug.do?
bug_id=6350706

