
Multi-stage Programming for Mainstream Languages

Edwin Westbrook Mathias Ricken Jun Inoue Yilong Yao Tamer Abdelatif1 Walid Taha
Rice University

{emw4,mgricken,ji2,yy3}@cs.rice.edu, eng.tamerabdo@gmail.com, taha@cs.rice.edu

Abstract
Multi-stage programming (MSP) provides a disciplined approach
to run-time code generation. In the purely functional setting, it
has been shown how MSP can be used to reduce the overhead
of abstractions, allowing clean, maintainable code without pay-
ing performance penalties. Unfortunately, MSP is difficult to com-
bine with imperative features, which are prevalent in mainstream
languages. The central difficulty is scope extrusion, wherein free
variables can inadvertently be moved outside the scopes of their
binders. This paper proposes a new approach to combining MSP
with imperative features that occupies a “sweet spot” in the design
space in terms of how well useful MSP applications can be ex-
pressed and how easy it is for programmers to understand. The key
insight is that escapes (or “anti-quotes”) must be weakly separable
from the rest of the code, i.e. the computational effects occurring
inside an escape that are visible outside the escape are guaranteed
to not contain code. To demonstrate the feasibility of this approach,
we formalize a type system based on Lightweight Java which we
prove sound, and we also provide an implementation, called Mint,
to validate both the expressivity of the type system and the effect
of staging on the performance of Java programs.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages

Keywords Multi-staged languages, Multi-stage programming,
Type systems, Java

1. Introduction
Abstraction mechanisms, such as reflection and design patterns,
are useful for writing clean, maintainable code. Often, however,
such mechanisms come with a steep performance overhead, mak-
ing them less useful in real systems. Our goal is to allow software
developers to use such abstractions, but have them be executed in an
efficient manner. One approach to this problem is multi-stage pro-
gramming (MSP), a language feature that provides a disciplined
form of runtime code generation. Just by inserting staging anno-
tations, a form of quasi-quotation, the developer can change pro-
grams that use expensive abstractions into program generators,
which generate programs without the abstractions. This reduces
the runtime cost of abstractions, because the overhead is only paid
when the generators are executed, not at the time the programs they
generate are run.

A key issue for MSP is type safety, which ensures statically that
all programs generated at runtime will be well-formed. Although it
had been known how to ensure type safety for MSP in the purely
functional setting [4, 28, 29], it previously remained an open chal-
lenge how to extend this guarantee to mainstream languages such as

1 Ain Shams University.

Java. In particular, standard features of mainstream languages, such
as imperative assignment, can lead to scope extrusion, in which
variables in code fragments may move out of the scopes where they
are defined. Several approaches to this problem have been proposed
[1, 11, 12, 14] that give the expert MSP user fine-grained control
over scoping in code; however, there is still a need for a type sys-
tem that makes MSP accessible to general programmers. Mint pro-
vides a type system that is well-suited for the prevalent culture of
programming in languages like Java. Specifically, Mint allows im-
perative generators and does not require a functional programming
style, a style that often is inconvenient in Java. The type system re-
mains simple while being more expressive than any previous type
system that statically ensures type safety of generated code.

Contributions
To make MSP accessible to programmers in mainstream languages,
we propose a new approach to type-safe MSP that we argue occu-
pies a “sweet spot” in the design space in terms of how well useful
MSP applications can be expressed and how easy it is for program-
mers to understand. Our contributions include:

• After a brief introduction to staging in Java (Section 2), we
analyze and explain why scope extrusion can arise with naive
approaches to MSP in Java or in similar languages (Section 3).

• We introduce the notion of weak separability as a solution
to the scope extrusion problem (Section 4). Weak separability
ensures that any effects that can be observed outside escaped
expressions will not involve code objects. We present a type
system that realizes this idea, and show that it is sufficient to
prevent scope extrusion.

• We demonstrate the expressivity of the type system using a
number of small examples illustrative of important classes of
programs for which MSP can be useful (Section 5). The exam-
ples show the use of MSP for building interpreters, numerical
code, and reflective programs. The examples also emphasize
that the type system allows expressing imperative generators
that, for example, throw exceptions or store code in locations
that cannot escape the scope of a surrounding dynamic binder.

• We formalize the semantics and prove the type safety of a core
calculus illustrating the key features of the proposed type sys-
tem. (Section 6). Proving type safety establishes that a well-
typed program is guaranteed to be free of any runtime errors,
including possible scope extrusion and generation (and execu-
tion) of ill-formed code. The novelty of the type system is in
the use of a stack of store typings, instead of a single store typ-
ing, to mirror the dynamic binding structure of the term. This
captures the fact that heap locations allocated inside dynamic
binders may not be visible outside those binders. Full proofs
are available in Appendix A.

public static
Integer power(Integer x, Integer n){

if (n == 1)
return x;

else
return x * power(x, n-1);

}

(a) The Unstaged Power Function

public static
Code <Integer > spower(Code <Integer > x, int n){

if (n == 1)
return x;

else
return <| ‘x * ‘(spower(x, n-1)) |>;

}

(b) The Staged Power Function

Figure 1. Staging the Power Function in Mint

• We have implemented the type system in an MSP extension of
Java OpenJDK called Mint [18] (Section 7). The implementa-
tion was used to type check all examples presented in the paper.

• We use the implementation to confirm that MSP in Java — a
language typically implemented using JIT compilation — can
lead to performance speedups similar to those seen by MSP
extensions of other languages (Section 8).

2. Multi-Stage Programming in Mint
Mint extends Java 6 with the three standard MSP constructs: brack-
ets, escape, and run (see e.g. [26]). Brackets are written as <| |>

and delay the enclosed computation by returning it as a code object.
For example, <| 2 + 3 |> is a value. Brackets can contain a block
of statements if the block is surrounded by curly braces:

<| { C.foo ();
C.bar (); } |> // has type Code <Void >

Code objects have type Code<T>, where T is the type of the expres-
sion contained. For example, <| 2 |> has type Code<Integer>. A
bracketed block of statements always has type Code<Void>.

Code objects can be escaped or run. Escapes are written as ‘

and allow code objects to be spliced into other brackets to create
bigger code objects. For example,

Code <Integer > x = <| 2 + 3 |>;
Code <Integer > y = <| 1 + ‘x |>;

stores <| 1 + (2 + 3) |> into y. Run is provided as a method
run() that code objects support. For example, executing

int z = y.run ();

after the above example sets z to 6.
Mint also allows cross-stage persistence (CSP), wherein a vari-

able bound outside brackets can be used inside the brackets, as in

int x = 1;
Code <Integer > c = <| x + 1 |>;

Weak separability, the requirement Mint uses to ensure safety,
places certain restrictions on CSP; see Section 4.

Basic MSP in Mint can be illustrated using the classic power
example. Figure 1(a) displays the unstaged power function in Java.
Figure 1(b) displays a staged version. The staged method spower

takes in an argument x that is a piece of code for an integer, along
with an integer n, and returns code that multiplies x by itself n times.

3. The Scope Extrusion Problem
One of the most important properties of MSP languages is the guar-
antee that program generators will always produce well-formed
code. It is known how to achieve this in the purely functional set-
ting [4, 28, 29]. In the presence of imperative features, however,
guaranteeing this is more challenging because of the possibility of

scope extrusion, where a code object containing a variable is used
outside the scope of the binder for that variable. If such a code ob-
ject were allowed to be compiled and run, a runtime error would
be emitted, because the result of compiling and running code with
free variables is undefined.

Scope extrusion can be caused by the following situations:

1. Assigning a code object to a variable or field that is reachable
outside the escape, for example:
Code <Integer > x;
<| { Integer y = foo ();

‘(x = <| y |>); } |>;

2. Throwing an exception that contains a code object, for example:
Code <Integer > meth(Code <Integer > c) {

throw new CodeContainerException(c);
}
<| { Integer y; ‘(meth(<| y |>)); } |>

3. Cross-stage persistence (CSP) of a code object, an example of
which is displayed in Figure 2.

The first two cases are straightforward; the first example ex-
trudes y from its scope by assigning <| y |> to the variable x bound
outside of the scope of y, while the second example throws an ex-
ception containing <| y |> outside the scope of y. The third exam-
ple, however, is more subtle. This example creates an anonymous
inner subclass of Thunk, whose call method returns a code object
containing the variable y. This Thunk object is then passed to doCSP

in the escape, yielding the code object
<| { Integer y = foo ();

Code <Integer > d = T.call (); } |>

where T is the anonymous inner subclass of Thunk. In a substitution-
based semantics that substitutes values directly for variables, no
scope extrusion would occur, because running this code object
would substitute the return value of foo() for y in T, thus producing
a new copy of T whose call method returns <| r |>, where r

is the return value of foo(). Such a semantics, however, would
be impractical for a language like Java, because it would involve
traversing the (possibly compiled) method definitions of T, and it
would also be confusing, because the call method of T itself would
not be called when this example was run. In an environment-based
semantics, which moves the value to some location in a separate
environment and substitutes an index of that location (usually the
variable itself) for the variable, running the above code would
simply return the value of T.call(), which would produce the
code object <| y |>, with y being out of its scope. The cross-stage
persistence of the Thunk is essentially the same as storing the value
of T in a global reference cell or hash table, and as soon as that
is done, the Thunk has been moved outside the scope of y. Our
formalization of Mint properly models this indirection, although we
model the environment as part of the heap rather than as a separate
entity (see Section 6).

4. Weak Separability
The three situations mentioned in the previous section necessarily
all involve code objects; effects that do not involve code cannot
cause scope extrusion. We therefore first define the term code-free:

Definition 1. A type is code-free if it is not a subtype of Code<T>,
the types of all of its fields are code-free, all of its methods’ return
types are code-free, and its class is final. A value is code-free if its
type is code-free.

If a value x is code-free, then no code object is reachable from
x, and scope extrusion cannot occur due to effects involving x.

The requirement that a class is final means that the class is not
allowed to be subclassed. This restriction ensures that a subclass
with an additional field of type Code<T> cannot be substituted at
runtime. Making Java classes final is unusual, but only because
there are almost no benefits to declaring a class final. In our ex-
perience, most Java classes written by application developers can
be final.

Commonly used code-free types include number types such as
Integer and Double, the String class, arrays of code-free types,
and all of Java’s reflection classes such as Class and Field. It does
not include Object, for example, as this type is not final, and an
Object could be a code object at runtime.

Scope extrusion can be prevented by requiring that escapes are
weakly separable, which we define informally:

Informal Definition 1. A term is weakly separable if both side
effects observable outside the term and cross-stage persistence in-
volve only code-free values.

Intuitively, requiring escapes to be weakly separable will pre-
vent scope extrusion, because no code object can be moved outside
of an escape. A similar but stronger restriction was used in the sys-
tems of Kameyama et al. [11, 12] to ensure that no effects occur-
ring inside escapes could be visible outside the escapes.1 We call
the condition introduced by Kameyama et al. separability.

We leave the notion of weak separability only informally de-
fined here both because formalizing it would require complex se-
mantic definitions and because it is undecidable in general. Instead,
we provide a conservative approximation of weak separability that
is used by Mint. This approximation is decidable, and we show
below that it still leaves an expressive language. Unless otherwise
specified, the phrase “weakly separable” in the remainder of this
document refers to this approximation:

Definition 2. A Mint term e is weakly separable iff:

1. Assignment is made only to variables bound within e, or to
fields or variables of code-free types;

2. Exceptions are only thrown by a throw new C(e1, ..., en);

construct where the ei are code-free, or the exception is caught
by an enclosing try-catch construct before it can leave e;

3. Cross-stage persistence occurs only for final variables of code-
free types;

4. Only weakly separable methods and constructors are called.

We are using the word term to describe an expression, state-
ment, or method body. The notion of pseudo-expression in Section
6.2 is a direct formalization of this kind of term.

The first three of the clauses in the definition above directly
preclude the three cases of scope extrusion in the previous section.
The restriction on throwing exceptions is syntactic and allows for a
static check of code-freedom. Note that the final restriction on
CSP variables exists so that the value of the variable does not

1 Technically, Kameyama et al. placed this restriction on future-stage
binders.

interface Thunk { Code <Integer > call (); }

Code <Code <Integer >> doCSP(Thunk t) {
return <| t.call() |>;

}

<| {
Integer y = foo();
Code <Integer > d = ‘(doCSP(new Thunk () {

Code <Integer > call() {
return <| y |>;

}}));
} |>.run ();

Figure 2. Cross-stage Persistence of Code Objects

change over the lifetime of the code object; Java has a similar
restriction for variables referenced inside anonymous inner classes.
The last clause ensures that all methods called from the body of
a weakly separable term also satisfy weak separability. To check
this condition, methods that are going to be called from the body
of an escape are explicitly annotated in Mint with the keyword
separable.

To demonstrate how weak separability works in practice, the
following code gives examples showing how each of the four
clauses of weak separability can fail. Since all of these examples
occur in the method foo, which is marked as separable, each of
these examples represents a type error in the program. The first
example, which assigns to x.c, violates clause 1 of Definition 2
since x.c has the non-code-free type Code<C>. The second example
violates clause 2 since it passes a code object to the constructor
of an exception which is being thrown. The third example violates
clause 3 because it uses cross-stage persistence on the value x of
type C; the type C is not code-free because it contains the field c of
type Code<C>. Finally, the fourth example violates clause 4 because
it calls the method bar(), which is not marked with the separable

keyword.

class C {
Code <Integer > c;

void bar() { ... }

separable C foo(final C x) {
// x.c is not code -free (1)
x.c = <|1|>;

// CodeContainerException takes a
// non -code -free argument (2)
throw new CodeContainerException (<|x|>);

// not a ’throw new C(e1 , ..., en);’
// construct (2)
CodeFreeException e =

new CodeFreeException ();
throw e; // error

// CSP of x but C is not code -free (3)
Code <C> y = <|x|>;

// bar() is not marked separable (4)
bar ();

}
}

5. Expressivity
Weak separability is a highly expressive notion that excludes only
a few coding patterns, such as generators that store open code
in a global data structure. Such situations can be addressed by
introducing a local data structure and ensuring that it is not used
outside the dynamic binder. The separability restriction is only
problematic when the coding pattern requires scope extrusion.

In an imperative language like Java, being able to write code
generators with side effects is a desirable property: An imperative
programming style fits better into the language’s culture, while
functional programming in Java can often be inconvenient and
verbose.

Weak separability does not severely restrict expressiveness be-
cause there is a tendency for the computational effects used in code
generators to be separable: It is rare that generators are required to
export code objects through side effects; all other side effects not
involving code are weakly separable and therefore allowed. Fur-
thermore, the run() method is only called outside of any brackets
in almost all applications of MSP, and cross-stage persistence is
mostly used for primitive types. Generated code is not restricted by
weak separability at all.

To illustrate these points, the remainder of this section describes
the implications of weak separability and examines a number of
MSP examples in Mint, namely: staging an interpreter, a classic
MSP example; staging array views [22] to remove abstraction over-
head; and loop unrolling. The staged interpreter shows that throw-
ing a code-free exception in a code generator is allowed. Both stag-
ing array views and loop unrolling demonstrate generators for im-
perative code. Section 5.4 gives another example, a staged serial-
izer that uses Mint’s reflection capabilities. The performance of all
these examples is evaluated in Section 8.

5.1 Staged Interpreter
Staged interpreters are a classic application of MSP [26, 27]. To
demonstrate that staged interpreters can be written in Mint, we
have implemented an interpreter for a small programming language
called lint [26], which supports integer arithmetic, conditionals,
and recursive function definitions of one variable.

The unstaged interpreter represents expressions with the Exp

interface, and instantiates this interface with one class for each
kind of AST node in the language. This interface specifies the
single method eval for evaluating the given expression, which
takes two environments, one for looking up variables and the other
for looking up defined functions. The environments are modeled as
functions, implemented using anonymous inner classes. The empty
environments unconditionally throw an exception.

Integers, addition, variables and application of defined func-
tions, for example, are implemented as follows:

interface Exp {
public int eval(Env e, FEnv f);

}
class Int implements Exp {

private int _v;
public Int(int value) { _v = v; }
public int eval(Env e, FEnv f) {

return _v;
} }
class Add implements Exp {

private Exp _l, _r;
public Add(Exp l, Exp r) { _l = l; _r = r; }
public int eval(Env e, FEnv f) {

return _l.eval(e, f) + _r.eval(e, f);
} }
class Var implements Exp {

private String _s;
public Var(String s) { _s = s; }

public int eval(Env e, FEnv f) {
return e.get(_s);

} }
class App implements Exp {

private String _s;
private Exp _a; // argument
public App(String s, Exp a) {
_s = s; _a = a;

}
public int eval(Env e, FEnv f) {

return f.get(_s).apply(_a.eval(e, f));
} }

Variable lookup is performed in a variable environment by call-
ing the Env.get(String s) method, returning an integer. In ap-
plications, function lookup is done using the FEnv.get(String s)

method, returning a Fun object with an int apply(int v) method,
which is then applied to the argument of the application.
interface Env { public int get(String y); }
interface FEnv { public Fun get(String y); }
interface Fun { public int apply(int param); }

Two empty environments, env0 and fenv0, unconditionally
throw an exception in their get methods to signal a failed lookup.
The environments are extended using the ext and fext methods.
For instance, ext is
static Env ext(final Env env ,

final String x,
final int v) {

return new Env() {
public int get(String y) {

if (x.equals(y)) return v;
else return env.get(y);

} }; }

Recursive functions are implemented using anonymous inner
classes to express closures. The code below creates a function
environment fenv1 with the declaration of the identity function
id(x) = x:
final Exp body = new Var("x");
FEnv fenv1 = fext(fenv0 , "id", new Fun() {

public int apply(final int param) {
return (body.eval(

ext(env0 , "x", param),
fext(fenv0 , "id", this)));

} });

The staged interpreter redefines the Env.eval method to return
Code<Integer>, so that evaluating an expression yields code to
compute its value. The variable environment returns Code<Integer>,
and the function environment returns Code<? extends Fun>.
interface Exp {

public separable
Code <Integer > eval(Env e, FEnv f);

}
interface Env {

public separable
Code <Integer > get(String y);

}
interface FEnv {

public separable
Code <? extends Fun > get(String y);

}

The return type of the FEnv.get method uses a wild card with
an upper bound of Fun. This is necessary since the type of the value
produced by the code object is not exactly Fun, but rather a subtype
of Fun.

The Exp.eval, Env.get, and FEnv.get methods are marked as
separable so that they can be called from inside an escape. Staging
the above AST classes yields the following:

interface Exp {
public separable
Code <Integer > eval(Env e, FEnv f);

}
class Int implements Exp { /* ... */

public separable
Code <Integer > eval(Env e, FEnv f) {

final int v = _v; return <| v |>;
} }
class Var implements Exp { /* ... */

public separable
Code <Integer > eval(Env e, FEnv f) {

return e.get(_s);
} }
class Add implements Exp { /* ... */

public separable
Code <Integer > eval(Env e, FEnv f) {

return <| ‘(_l.eval(e,f)) +
‘(_r.eval(e,f)) |>;

} }
class App implements Exp { /* ... */

public separable
Code <Integer > eval(Env e, FEnv f) {

return <| ‘(f.get(_s)). apply(
‘(_a.eval(e,f))) |>;

} }

The Int and Var classes are straight-forward. Operations like
Add recursively evaluate their subtrees and splice together the re-
turned code objects. Function application in App again uses the get

method to look up the function named by _s. The return type of
get is now Code<Fun>, meaning that get returns code for the de-
fined function. This code is spliced into the returned code, and its
result is applied to the evaluation of the argument using the apply

method. The argument for apply is obtained by splicing in the code
object returned by _a.eval escapes both the function and the code
value from evaluating the argument, and then returns code to apply
the function to the argument.

If _s does not name a valid, defined function, then the get

method throws an exception. This is the only computational effect
in the whole staged interpreter that happens inside a code generator.
It is weakly separable because the thrown exception need only con-
tain the string argument _s that was not found in the environment;
the exception therefore is code-free.

The functions to extend the environments associate names with
code objects now. During lookup, we have to use the == operator
instead of the String.equals method, because the latter has not
been declared separable. This is not a serious impediment, though,
since Java strings are immutable and can be interned. Staging
Env.ext yields:

static separable Env ext(final Env env ,
final String x, final Code <Integer > v) {
return new Env() {

public separable
Code <Integer > get(String y) {
// error: if (x.equals(y))
if (x==y) return v;
else return env.get(y);

} }; }

In the code that creates recursive functions, we again use anony-
mous inner classes for closures. Since the function environment as-
sociates names with code for functions, we have to put a reference
to the function we are creating in brackets. However, a reference to
this is not allowed, so we create a final local variable fthis and
return code for it.

final Exp body = new Var("x");
FEnv fenv1 = fext(fenv0 , "id", <| new Fun() {

public int apply(final int param) {

final Fun fthis = this;
return ‘(body.eval(

ext(env0 , "x", <| param |>),
fext(fenv0 , "id", <| fthis |>)));

} } |>);

Evaluating a program is now a two-step process. The eval

method now returns code for an integer, running that code returns
the integer. Section 8 provides performance comparisons between
staged and unstaged interpretation.

5.2 Array Views
As discussed, weak separability does not restrict the computational
effects in generated code; it only restricts effects in the code gen-
erators themselves. As an example of this, we use staging to re-
move overhead in array views, which are useful for parallel pro-
gramming.

It can be challenging for a compiler to parallelize Java code that
uses multi-dimensional arrays, implemented in Java as nested one-
dimensional arrays. This arrangement prevents the compiler from
assuming that A[i][j] and A[i+1][j] refer to different locations.
In one-dimensional arrays, each index refers to a different location,
and this knowledge allows for simpler parallelization.

To address the problems with multi-dimensional arrays in Java,
the Habanero project [8] provides array views, which map subsec-
tions of multi-dimensional arrays to one-dimensional arrays with-
out requiring the programmer to perform the arithmetic manually
[22].

Much simplified, an array view stores a reference to a one-
dimensional base array and provides get and set methods for
several numbers of dimensions. The example below shows get and
set for a two-dimensional double array:

class DoubleArrayView {
double [] base;
public double get(int i, int j) {
return base[offset + (j-j0) + jSize *(i-i0)];

}
public void set(double v, int i, int j) {
base[offset + (j-j0) + jSize*(i-i0)] = v;

}}

The methods calculate the index in the base array for the coor-
dinates (here: i, j) using the minimum values for those dimensions
(here: i0, j0), the size of the dimensions (here: iSize, jSize) and
the start index of the view (offset). This calculation is performed
for every array access.

The overhead of this calculation can be removed by staging
the array view. The base array itself and the parameters i0, j0,
iSize, jSize, and offset describing the array view are replaced
by code values that can be spliced together as needed. The get

method returns Code<Double>, code to retrieve the value in the
array. The set method returns Code<Void> and is a generator for
code performing the array assignment.

class SDoubleArrayView {
Code <double[]> base;
public separable
Code <Double > get(final int i, final int j) {
return <| ‘(base)[‘(offset) + (j-‘(j0)) +

‘(jSize)*(i-‘(i0))] |>; }
public separable
Code <Void > set(final Code <Double > v,

final int i, final int j) {
return <| {

‘(base)[‘(offset) + (j-‘(j0)) +
‘(jSize)*(i-‘(i0))] = ‘(v); } |>; }

}

Staging allows us to work with the array view at a high level
without paying for the overhead at runtime. For example, a matrix
transpose can be written as

public Code <Void > stranspose(int m, int n,
final SDoubleArrayView input ,
final SDoubleArrayView output) {
Code <Void > stats = <| { } |>;
for(int i = 0; i < m; i++)

for(int j = 0; j < m; j++)
stats = <| {

‘stats;
‘(output.set(input.get(i,j),j,i)); } |>;

return stats;
}
Code <Void > c = stranspose (4, 4, a, b);

This method generates code consisting of direct array accesses:

b[0+(0 -0)+4*(0 -0)] = a[0+(0 -0)+4*(0 -0)];
b[0+(0 -0)+4*(1 -0)] = a[0+(1 -0)+4*(0 -0)]; // ...

An optimizing compiler will replace the computations with
constants, completely removing the cost of the abstraction in the
generated code.

Note that the size of the dimensions does not have to be known
statically, but at generation time; only the number of dimensions of
the array has to be known statically. Therefore, the size of the array
can vary, and this optimization is applicable in many situations.

This example performs loop unrolling as well. The code objects
that perform the array assignments, returned by the set method,
are accumulated into another code object stats. At the end of the
two nested loops, stats will contain the sequence of statements
for the entire matrix transpose operation. The code generator is
written in an imperative style consistent with the prevalent Java
culture. The body of the method is weakly separable because stats

is bound inside the method; the code inside stats returned by the
stranspose method is not weakly separable, but that is not required
of generated code.

5.3 Loop Unrolling
The example above demonstrates how to unroll a specific loop. This
can be done for a generic loop, which can be expressed in standard
Java as follows:

public static void
roll(int start , int stop , int step , Iter I) {

for(int x = start; x < stop; x += step)
I.iteration(x);

}

This uses an interface called Iter to specify an arbitrary action for
each iteration of the loop through the iteration method, which has
return type void. To unroll this loop, we can stage the roll method
as follows:

public static separable Code <Void >
unroll(int start , int stop , int step , SIter I){

Code <Void > c = <| { } |>;
for(int x = start; x < stop; x += step){

c = <| { ‘c; ‘(I.iteration(x)); } |>;
}
return c;

}

This method uses an interface SIter to specify a code object for
each iteration of the loop through the iteration method, which for
SIter has return type Code<Void>. These code objects are accumu-
lated into a code object c containing the sequence of statements
for the whole loop. This code generator is written in an imperative
style consistent with the prevailing Java culture. The body of this

method is weakly separable because c is bound inside the method.
The code object returned by I.iteration is not.

For example, the following class generates code that accumu-
lates the indices used in the loop iteration into cell:

static class sIncrIter implements SIter {
Code <IntCell > cell;

public separable Code <Void >
iteration(final int i) {

return <| { (‘cell). value += i; } |>;
}

}

Staged array views and loop unrolling serve as compelling exam-
ples how MSP can reduce abstraction overhead in an imperative
setting.

5.4 Staged Reflection Primitives
Neverov observed that staging and reflection in languages like
C# and Java can be highly synergistic [15]. He also noticed that
fully exploiting this synergy requires providing a special library
of staged reflection primitives. Mint provides such a library. The
primitives are based on the standard reflection primitives in the Java
library, including the Class<A> and Field classes. 2

To represent these in Mint, the library adds two corresponding
types, ClassCode<A> and FieldCode<A,B>. The ClassCode<A> type
is indexed by the class itself, just like the type Class<A> it is mod-
eled after. For example, the corresponding class for Integer objects
has type ClassCode<Integer>. Any ClassCode<A> object provides
methods for manipulating the class, corresponding to the methods
of Class<A>. For example, the cast method of ClassCode<A> takes
any code object of type Code<Object> and inserts a cast in the code
object, yielding a code object of type Code<A>. Because the cast is
inserted into the code, any exceptions raised by the cast will not
happen until the code is run with the run() method. The class also
provides methods for looking up a class by name and for retrieving
the fields of a class.

The type FieldCode<A,B> represents a field in class A that has
type B. It provides a get method which takes a Code<A> value and
returns a value of type Code. This method constructs field se-
lection (intuitively, a <| (‘a).f |> code fragment) on that object.
The type also provides a getFieldClassCode method to return a
ClassCode object for the type B.

The fields of a class are returned using the getFields()

method in ClassCode<A>. The return type of getFields() is
FieldCode<A,?>[], where the ? represents an existential type in
Java’s generics. The method therefore returns an array of fields
contained in class A, all of which have “some” type.

The following example illustrates the use of these classes. The
code defines a serializer, which recursively converts an object and
all of its fields to a string representation. Serializers are often
slow, however, because they must use Java’s reflection primitives
to determine the fields of an object at runtime. Here we show how
to write a staged serializer, which generates a serializer for a given
static type. This approach performs the necessary reflection when
the serializer is generated, and produces code to serialize all of a
given object’s fields without reflection:

public static separable <A> Code <Void >
sserialize(ClassCode <A> t, final Code <A> o) {

if (t.getCodeClass ()== Byte.class)
return <| {

2 The Mint reflection library does not support all reflection primitives. For
example, Method and Constructor have multiple parameters. This would
require adding indexed types to Java, and is therefore outside the scope of
this work.

writeByte (‘((Code <Byte >)o)); } |>;
else if (t.getCodeClass ()== Integer.class)

return <| {
writeInt (‘((Code <Integer >)o)); } |>;

Code <Void > result = <| { } |>;
for(FieldCode <A,?> fc: t.getFields ()) {

result = <| { ‘result;
‘(sserializeField(fc, o)); } |>; }

return result;
}

The code to write primitive fields is generated directly. Non-
primitive fields are visited recursively. The code is then spliced
together and returned. This example was inspired by a similar ex-
ample given by Neverov and Roe [15].

6. Type Safety
We now turn to formalizing a subset of Mint, called Lightweight
Mint (LM), and to proving type safety. Type safety implies that
scope extrusion is not possible in Mint.

LM is based on Lightweight Java [25] (LJ), a subset of Java
that includes imperative features. LM includes staging constructs
(brackets, escapes, and run), assignments, and anonymous inner
classes (AICs). These features—especially the staging constructs
and AICs—make the operational semantics and type system large;
staging constructs alone double the number of rules in the opera-
tional semantics, while AICs increase the complexity of the type
system. All of these features, however, are necessary to capture
the safety issues that arise in Mint. Specifically, assignments are
required to cause many forms of scope extrusion, and AICs are re-
quired to create the scopes (i.e., the additional variable bindings)
that can be extruded. AICs also lead to more complex possibilities
for scope extrusion as shown, for example, in Figure 2 of Section
3, which uses an AIC in combination with CSP to perform scope
extrusion. We wish to show that such possibilities are prevented by
our system.

A noteworthy feature of the type system is the use of a stack
of store typings instead of a single store typing. The standard way
to express type preservation of programs with mutable references
is to have a store typing Σ that assigns types to locations that
are allocated during evaluation. Preservation then states that, if
e1, typable with store typing Σ, takes a computation step to e2

(possibly allocating new store locations), then e2 is typable with
a new, possibly extended, store typing Σ′. Instead, we use a stack
of store typings, represented as a sequence. Each time evaluation
enters the scope of a variable binding, say of x, we push a new Σ
to the right of the sequence that may type heap locations holding
code values containing x free. During execution, type assignments
to non-code-free heap locations l allocated within this scope are
always added to this Σ. The Σ is popped from the right upon
leaving the scope of x, so references to l are only typable in the
scope of x.

When we pop a Σ from the stack of Σ’s, we always salvage
code-free locations and tack them on to the Σ’s that remain, so that
those locations can be used elsewhere. The Smashing Lemma guar-
antees that this contraction, or smashing, of the store typing stack
is safe. For this strategy to work, the Σ’s must obey a condition
somewhat similar to the Barendregt variable convention: whenever
Σ is appended to the store typing stack, the locations in Σ must be
fresh with respect to other Σ’s in the same typing derivation; i.e.,
the domains of all distinct Σ’s appearing in a single derivation tree
must be disjoint. Otherwise, a location l that types 〈|x|〉 under one
Σ can be used to type an incompatible object in a disjoint subtree
of the derivation tree. A more rigorous definition of this constraint
can be found in the appendix.

extensible class names D
final class names F
variables x
field names f
method names m
heap locations l
classes C ::= D | F
separability marker S ::= sep | insep
types τ ::= C | Code〈S , τ〉
class declarations CL ::= class C extends D

{〈τi fi〉Ii ; 〈M0
j 〉Jj }

method declarations Mn ::= S τ m(〈τi xi〉i){en}
class hierarchy P ::= 〈CLi〉i
programs p ::= P, e0

expressions en ::= x | l | en.f | (en.f := en)
| en.m(〈en

i 〉i)
| let x ⇐ new C(〈en

i 〉i) in en

| new D(〈en
i 〉Ii) {〈Mn

j 〉Jj }
| 〈|en+1|〉 | ‘en−1[n > 0]
| en.run()

values vn ::= l | en−1[n > 0]

NB: Production rules marked [n > 0] can be used only if n > 0.

Figure 3. Lightweight Mint syntax.

To simplify the formalism, LM disallows assignments to local
variables; all assignments must be to object fields. This restriction
by itself would completely rule out assignments in escapes, how-
ever. To rectify this problem, we add a restricted form of let, writ-
ten as

let x <= new C (...) in ...

which always allocates a new instance of a class C that is not
an AIC. We then relax the restrictions on escapes to allow field
assignments if the object containing the field was allocated by a let
inside the escape. Local variable assignment can then be modeled
by replacing any local variable binding x of type C for which there
is an assignment by a let-binding of a new variable x_cell of type
CCell, defined as follows:

public class CCell { public C x; }

Uses of x, including assignments to x, can then be replaced by uses
of x_cell.x. Thus, we model the environment as part of the heap,
meaning that the values of variables are always heap locations. This
is equivalent to an environment-based semantics, which models
variables as locations in a special environment object.

6.1 Syntax
In this section, we formalize the syntax of LM. We use the follow-
ing sequence notation:

Notation. We write 〈a, b, c, . . .〉 for sequences, with the shorthand
〈Ai〉Ji=I for 〈AI , AI+1, . . . , AJ〉. I may be omitted, and it defaults
to 1. J may also be omitted when clear from context. The empty
sequence is written 〈〉. Concatenation of sequences s1 and s2 is
written s1 ◦ s2, with the shorthand 〈Ai〉i, A for 〈Ai〉i ◦ 〈A〉. We
also use 〈ei〉Ji=I [i0 → x] to denote 〈ei〉i with ei0 replaced by x.

The syntax of LM is given in Figure 3. Expressions are stratified
into levels. An expression is at level n if, for every point in the
expression, the nesting of escapes is at most n levels deeper than
brackets. Clearly, a level-n expression is also a level-(n + 1)
expression. This stratification induces a similar structure on method
declarations. A complete program must not have any unmatched

escapes, so the bodies of methods declared in the class hierarchy
are required to be at level 0. Likewise, the initial expression in a
program is required to be at level 0. Values are also stratified: a
value at level 0 is just a heap location, and a value at any level
n > 0 is any expression at level < n.
Remark. The n in en is a constraint on the shapes of terms that this
metavariable ranges over and is not something that forms a part of
any concrete term. Similar precautions apply to other superscripted
metavariables in this formalism, like vn and Mn.

We categorize classes (C) as final (F) or extensible (D) de-
pending upon their names. In the implementation, they are rather
categorized according to the manner in which they are declared,
but using disjoint sets of names gives a simpler system. The types
(τ) include classes as well as the code type Code〈S , τ〉, which is
considered distinct from the classes.

This code type Code〈S , τ〉 is indexed by a separability marker
S, which indicates whether a code object is itself separable,
and the type τ of the expression in the code object. Specifi-
cally, Code〈sep, τ〉 is the type of code objects containing sepa-
rable code, which is a subtype of the standard code type, written
Code〈insep, τ〉. This distinction is necessary in the case of a sep-
arable expression which itself contains a nested escape ‘e, since
we must know for type preservation that ‘e is guaranteed to reduce
only to separable code. In this case, e must have type Code〈sep, τ〉.

We do not allow an AIC to have fields or methods that its parent
does not, although we allow method overrides. Additional fields or
methods can be emulated by declaring (statically) a new subclass
with those fields and creating anonymous subclasses of those.

We do not include the syntax (new C(. . .)) for instantiating
ordinary (i.e., non-AIC) classes because one can write (let x ⇐
new C(. . .) in x) instead. Sequencing (e1; e2) is also omitted
because this code can be written seq.call(e1, e2), where seq.call
is a method that ignores its first argument and returns its second.

All judgments and functions in the following discussions im-
plicitly take a class hierarchy P as a parameter. We avoid writing
it out explicitly because it is fixed for each program and there is no
fear of confusion.

6.2 Operational Semantics
Figure 5 shows the small-step semantics for Lightweight Mint.
Ancillary definitions are found in Figure 4. Figure 5 defines the
judgment H1, be1

n
 H2, be2 which states that heap H1 and pseudo-

expression be1 evaluate in a single step at level n to H2 and be2,
respectively. The notion of heap is standard; a heap is a finite
mapping from locations to heap elements, where a heap element
contains a runtime type tag with either the contents of the object or
a code value if the tag is Code. The notion of a pseudo-expression,
defined as either an expression or a method body, is used because
execution can occur within bodies of methods defined at level > 0.
Similarly, we define the notion of pseudo-value, which is either a
value or a method body with no unresolved escapes at the current
level.

Figure 5 contains a number of helper functions. fields() extracts
the fields of a type. method() looks up a method, respecting
overriding rules. mbody() extracts the specified method’s formal
arguments and body. Code types do not have methods (run() is
formally not a method). mname extracts the method name from a
method declaration.

The single-step evaluation judgment n
 is defined as the closure

of the primitive one-step relation k

prim

under n, k-evaluation contexts

En,k. These are pseudo-expressions with a hole •. This hole can be
filled with an expression e, written En,k[e]; the superscripts n and
k express that filling the hole with a level k expression yields a
level n pseudo-expression. Most of the primitive reduction steps

operational terms

heaps H : l
fin→ h

runtime type tags T :: = C | sub D {〈M0
i 〉i} | Code

heap elements h :: = (C, 〈li〉i) | (Code, 〈|e0|〉)
| (sub D {〈M0

i 〉i}, 〈lj〉j)
pseudo-expressions ben :: = en | Mn

pseudo-values bvn :: = vn | Mn−1[n > 0]

evaluation contexts
En,k ::= En,k

e | En,k
M

En,k
M ::= S τ m(〈τi xi〉i){En,k

e }[n > 0]
En,k

e ::= •[n = k] | En,k
e .f | (En,k

e .f := en)
| (vn.f := En,k

e) | En,k
e .m(〈en

i 〉i)
| vn.m(〈vn

i 〉i, En,k
e , 〈en

j 〉j)
| let x ⇐ new C(〈vn

i 〉i, En,k
e , 〈en

j 〉j) in en

| let x ⇐ new C(〈vn
i 〉i) in En,k

e [n > 0]
| new D(〈vn

i 〉i, En,k
e , 〈en

j 〉j){〈Mn
a 〉a}

| new D(〈vn
i 〉i){〈Mn−1

j 〉j , En,k
M , 〈Mn

a 〉a}[n > 0]

| 〈|En+1,k
e |〉 | ‘En−1,k

e [n > 0] | En,k
e .run()

fields(T)

fields(Object) = fields(Code) = fields(Code〈S , τ〉) = 〈〉
fields(sub D {〈M0

i 〉i}) = fields(D)
fields(C) = 〈τi fi〉i ◦ fields(D′)

where class C extends D′ {〈τi fi〉i; . . . } ∈ P

mname(Mn)

mname(S τ m(. . .){ . . . }) = m

method(m, τ) or method(m, T)

method(m, sub D {〈M0
i 〉}i)

=

(
M0

i if mname(M0
i) = m

method(m, D) otherwise
method(m, C)

=

(
M0

j if mname(M0
j) = m

method(m, D′) otherwise
assuming that class C extends D′ { . . . ; 〈M0

j 〉j} ∈ P .

mbody(M0) or mbody(m, τ) or mbody(m, T)

mbody(S τ m(〈τi xi〉i){e0}) = (〈xi〉i, e0)
mbody(m, τ) = mbody(method(m, τ))
mbody(m, T) = mbody(method(m, T))

Variables returned by mbody are always fresh.

Figure 4. Preliminary definitions for operational semantics.

are straightforward, including rules for class instantiation, method
invocation, and assignment. These reductions only occur at level
0, to prevent reductions from occurring inside code objects. As lo-
cal variables are immutable, we can model method invocation and
let-execution by substitution. The local environment L found in
LJ [25] is therefore unnecessary, and the small-step judgment is
made between heap-term pairs rather than environment-heap-term
triples. This is not the same as using a substitution-based semantics,
because only heap locations are substituted for variables, i.e., vari-
ables are instantiated by their location on the heap. This is equiva-
lent to an environment-based semantics, as discussed in the begin-

H, en n

prim

H, en and H, ben n
 H, ben

l 6∈ dom H

H, new D(〈li〉i){〈M0
j 〉j}

0

prim

H[l 7→ (sub D {〈M0
j 〉j}, 〈li〉i)], l

H(l) = (T, 〈li〉i) fields(T) = 〈fi〉i
H, l.fi0

0

prim

H, li0

H(l) = (T, 〈li〉i)

H, (l.fi0 := l′)
0

prim

H[l 7→ (T, 〈li〉i[i0 → l′])], l′

H(l) = (T, . . .) mbody(m, T) = (〈xi〉i, e0)

H, l.m(〈li〉i)
0

prim

H, [〈li〉i/〈xi〉i][l/this]e0

l 6∈ dom H

H, let x ⇐ new C(〈li〉i) in e0 0

prim

H[l 7→ (C, 〈li〉i)], [l/x]e0

H(l) = (Code, 〈|e0|〉)

H, ‘l
1

prim

H, e0

H(l) = (Code, 〈|e0|〉)

H, l.run() 0

prim

H, e0

l 6∈ dom H

H, 〈|e0|〉 0

prim

H[l 7→ (Code, 〈|e0|〉)], l

H1, e
k
1

k

prim

H2, e
k
2

H1, En,k[ek
1]

n
 H2, En,k[ek

2]

Figure 5. Small-step semantics for Lightweight Mint.

ning of this section, but makes the formalism simpler because of
the removal of the local binding L found in LJ.

Each staging construct induces a primitive reduction rule. Es-
cape and run extract expressions from brackets. Escape reduces
only at level 1 and run only reduces at level 0. These are standard in
multi-stage languages [28], except that the code values are on the
heap. Brackets allocate a code object on the heap. CSP, which can
be regarded as execution at arbitrarily high levels, is automatically
taken care of by substitution and does not give rise to a redex.

6.3 Type System
Figure 6 gives preliminary definitions for the type system. A vari-
able typing (or type environment) comes in pairs, separated by a
| . The predicate iscf〈Fi〉(τ) means that τ is code-free assuming
that the final classes 〈Fi〉 are. Thus iscf〈〉(τ) means that τ is code-
free, which is also simply written as iscf(τ). Note, however, that
iscf() does not require method types to be code-free because the
formal language does not model class declarations within anony-
mous inner classes.The auxiliary functions ftypes(), ftypei(), and
mtype() are similar to fields() and method(), but they extract type
information.

Figure 7 shows the type system. The top-level judgment ` p
asserts that program p is a valid “initial state” of execution: the
class hierarchy P contained in p must be well-formed and the
expression e contained in p must be well-typed and free of heap

typing terms

variable typing Γ : x
fin→ τn

store typing Σ : l
fin→ τ

variable typing pair Γ ::= (Γ|Γ)

pseudo-types bτ ::= τ |〈τi〉i
S→ τ

iscf〈Fi〉(τ)

F ∈ 〈Fi〉
iscf〈Fi〉(F)

∀i. iscf〈Fj〉,F (ftypei(F))

iscf〈Fj〉(F)

cf(Σ), locs(be), ftypes(τ), ftypei(τ), ftype(f, τ)

cf(Σ) = Σ|L where L = {l ∈ dom(Σ) : iscf〈〉(Σ(l))}.
locs(be) = {l : l is a subterm of be}
ftypes(τ) = 〈τi〉i assuming fields(τ) = 〈τi fi〉i
ftypei(τ) = ftype(fi, τ) = τi assuming τi fi ∈ fields(τ)

mtype(m, τ) or mtype(M0)

mtype(S τ m(〈τi xi〉i){e0}) = 〈τi〉i
S→ τ

mtype(m, τ) = mtype(method(m, τ))
assuming

class C extends D′ { . . . } ∈ P

Figure 6. Preliminary definitions for the type system.

locations. A class hierarchy P is well-formed, written ` P , if P
is acyclic, field names and types (including inherited ones) do not
clash within each class, and each class is well-formed. We omit a
formalization of the first two checks but will use them implicitly
by assuming that auxiliary functions like fields() and mtype() are
always unambiguous and that the sequence returned by fields() is
finite and has no duplicates. Classes are well-formed if they contain
no locations, their methods are well-typed, and any overridden
methods have the same types as in the superclass.

The bottom half of Figure 7 defines typing for pseudo-expres-
sions with the judgment 〈Σi〉i; Γ `n ben : bτ |S, which states that the
pseudo-expression ben has type bτ at level n under the stack 〈Σi〉i of
store typings and the pair Γ of contexts. If S = sep, this judgment
further states that the pseudo-expression ben is weakly separable.
Variable typing Γ is partitioned into two parts in order to check
weak separability of field assignments. The right part contains the
variables that were bound within the current method or enclosing
escape, which are precisely the variables whose fields can be as-
signed to without violating weak separability. We always assume
that no variables are repeated in Γ.

Most of the rules for typing pseudo-expressions are straightfor-
ward. The first rule generalizes subtypes to supertypes. The next
two rules look up the types for variables and locations in the vari-
able and store typings, respectively. CSP is only allowed (by k > 0
or n > 0, respectively) if the associated type is code-free. The
next rule is typing let-expressions by extending the current con-
text with the let-bound variable, while the rule following is typing
field lookups by typing the object and then looking up the relevant
field type. In typing the body of a future-stage let, a new frame Σ
is added to the current stack 〈Σi〉i to allow for the possibility of
heap locations containing code objects with the variable x free.

The next three rules type field assignments (e1.f := e2) by
checking that e1 has some τ1 and that the type τ2 of e2 matches
the appropriate field type of τ1. The first of these rules applies to

τ ≺ τ ′

C ≺ C

τ1 ≺ τ2 τ2 ≺ τ3

τ1 ≺ τ3 τ ≺ Object

class C extends D { . . . } ∈ P

C ≺ D

Code〈sep, τ〉 ≺ Code〈insep, τ〉
τ ≺ τ ′

Code〈S , τ〉 ≺ Code〈S , τ ′〉

` p, ` P , ` CL

` P 〈〉; ∅|∅ `0 e0 : τ |S locs(e0) = ∅
` P, e0

inheritance is acyclic no field names clash 〈` CLi〉i
` 〈CLi〉i

〈locs(M0
i) = ∅〉i 〈〈〉; ∅|this : C0 `0 M0

i 〉i
〈mtype(mname(Mi), D) = undef or mtype(M0

i)〉i
` class C extends D {〈τj fj〉j ;〈M0

i 〉i}

〈Σi〉i; Γ `n sub D {〈Mn
i 〉}

〈〈Σi〉i; Γ1|Γ2, this : Dn `n Mn
j : τj |Sj〉j

n > 0 ∨ dom(∪iΣi) ⊇ locs(sub D {〈Mn
j 〉j})

〈Σi〉i; Γ1|Γ2 `n
sub D {〈Mn

j 〉j}

where τj = mtype(mname(Mn
j), D).

〈Σi〉i; Γ `n Mn : 〈τi〉i
S→ τ |S

〈Σi〉i, Σ; Γ1, Γ2, 〈xi : τn
i 〉i|∅ `n en : τ |S

〈Σi〉i; Γ1|Γ2 `n S τ m(〈τi xi〉i){en
} : 〈τi〉i

S→ τ |S′

〈Σi〉i; Γ ` H

∀l ∈ dom(∪iΣi). 〈Σi〉i; Γ ` H(l) : (∪iΣi)(l)

〈Σi〉i; Γ ` H

〈Σi〉i; Γ ` h : τ

〈Σi〉i; Γ ` h : τ τ ≺ τ ′

〈Σi〉i; Γ ` h : τ ′
〈(∪iΣi)(lj) ≺ ftypej(C)〉j
〈Σi〉i; Γ ` (C, 〈lj〉) : C

〈Σi〉i; Γ
≥1 `0 〈|e0|〉 : Code〈S , τ〉|S′

〈Σi〉i; Γ ` (Code, 〈|e0|〉) : Code〈S , τ〉

〈Σi〉i; Γ
≥1 `0

sub D {〈M0
j 〉j}

〈(∪iΣi)(lk) ≺ ftypek(D)〉k
〈Σi〉i; Γ ` (sub D {〈M0

j 〉j}, 〈lk〉k) : D

where Γ
≥1

(x) = τn ⇐⇒ Γ(x) = τn ∧ n ≥ 1.

〈Σi〉i; Γ `n en : τ |S Additional constraints on 〈Σi〉i are discussed in the text.

τ ′ ≺ τ 〈Σi〉i; Γ `n en : τ ′|S
〈Σi〉i; Γ `n en : τ |S

Γ(x) = τn iscf(τ) ∨ k = 0

〈Σi〉i; Γ `n+k x : τ |S
(∪iΣi)(l) = τ iscf(τ) ∨ n = 0

〈Σi〉i; Γ `n l : τ |S

〈〈Σi〉i; Γ1|Γ2 `n en
j : ftypej(C)|S〉j

〈Σi〉i, Σ; Γ1, Γ2|x : Cn `n en : τ |S
〈Σi〉i; Γ1|Γ2 `n (let x ⇐ new C(〈en

j 〉j) in en) : τ |S
〈Σi〉i; Γ `n en : τ |S

〈Σi〉i; Γ `n en.f : ftype(f, τ)|S

〈〈Σi〉i; Γ `n en
j : τj |S〉2j=1

ftype(f, τ1) = τ2 S = insep ∨ iscf(τ2)

〈Σi〉i; Γ `n (e1.f := e2) : τ2|S

Γ(x) = τn
1 〈Σi〉i; Γ1|Γ2 `n en : τ2|sep

x ∈ dom Γ2 ftype(f, τ1) = τ2

〈Σi〉i; Γ1|Γ2 `n (x.f := en) : τ2|sep

(∪iΣi)(l) = τ1 iscf(τ2) ∨ (n = 0 ∧ l ∈ dom ΣI)

ftype(f, τ1) = τ2 〈Σi〉Ii ; Γ `n en : τ2|sep
〈Σi〉Ii ; Γ `n (l.f := en) : τ2|sep

〈Σi〉i; Γ `n en : τ |S 〈〈Σi〉i; Γ `n en
j : τj |S〉j

mtype(m, τ) = 〈τj〉j
S→ τ

〈Σi〉i; Γ `n en.m(〈en
j 〉j) : τ |S

〈〈Σi〉i; Γ `n en
j : ftypej(D)|S〉j

〈Σi〉i; Γ `n
sub D {〈Mn

k 〉k}
〈Σi〉i; Γ `n

new D(〈en
j 〉j) {〈Mn

k 〉k} : D|S
〈Σi〉i; Γ1, Γ2|∅ `n+1 e : τ |S

〈Σi〉i; Γ1|Γ2 `n 〈|e|〉 : Code〈S , τ〉|S′
〈Σi〉i; Γ `n en : Code〈S , τ〉|sep

〈Σi〉i; Γ `n+1
‘e : τ |S

〈Σi〉i; Γ `n e : Code〈S , τ〉|S′

〈Σi〉i; Γ `n e.run()|insep

Figure 7. Type system for Lightweight Mint.

arbitrary e1 and types the assignment as weakly separable only
if the field has code-free type. The second and third rule handle
assignments of non-code-free type in a weakly separable context.
The second rule requires e1 to be a variable x and allows the
assignment to be typed as separable only if the variable is in Γ2

(recalling that Γ2 gives precisely the variables whose fields can
be modified without violating weak separability). The third rule
essentially captures how a judgment using the first or the second
rule transforms under substitution of a location l for the x in the
second rule: it requires that either the location l is in the topmost
store typing or the type of the field is code-free.

The rule following is typing method calls by looking up the type
of the given method. The rule on the immediate right checks well-
formedness of AIC definitions. Finally, the last three rules type
brackets, escape, and run, where typing 〈|e|〉 requires typing e at
the next level and adds the code type; typing ‘e requires typing e
at a code type on the previous level and removes the code type;
and typing e.run() types e at a code type on the same level and
removes the code type. Brackets can always be weakly separable,
run is never weakly separable, and escapes ‘e are only weakly
separable if e has type Code〈sep, τ〉.

The remainder of Figure 7 defines the following judgments.
〈Σi〉i; Γ `n sub D {〈Mn

i 〉} states that an anonymous subclass
of D with method definitions 〈Mn

i 〉 is well-formed. This re-
quires the methods 〈Mn

i 〉 to have the appropriate types. It also
requires, if n = 0, that all the locations in the AIC are contained in
dom(∪iΣi), ensuring that no new frames can be added to the stack
of store typings. The judgment 〈Σi〉i; Γ `n Mn : 〈τi〉i

S→ τ |S
states that method M has input types 〈τi〉, output type τ , and fur-
ther is weakly separable if S = sep. Note that this rule is allowed
to push a new frame onto the stack of store typings when the level
n > 0. This is because there may be some locations in the store that
contain code that include the free variables bound inside M . Note
also that passing inside a method resets the vertical bar | in Γ to
the end, indicating that weakly separable expressions in the method
cannot freely access variables bound at or before the method M .

The judgment 〈Σi〉i; Γ ` H states that the store H is well-
formed under the given stack of store typings. This judgment in-
cludes the typing context Γ because the store may contain code
with free variables. This judgment requires that, for all locations l
in the stack of store typings, the heap for H(l) is well-typed. Note
that there may be more locations in H than in the domain of 〈Σi〉i,
allowing the possibility that other frames could be pushed onto this
stack. The judgment 〈Σi〉i; Γ ` h : τ is then used to state that
heap form h has type τ . The rules for this judgment require that
the expressions contained in the heap form h are well-typed. The
typing context used to type these expressions is the restriction of Γ
to the variables of level greater than 0. This is because heap forms
are allowed to have code objects with free variables in them, but
these free variables must be bound in other code objects, meaning
they must have been bound at level greater than 0. Note that, as a
side effect of these definitions, if 〈Σi〉i; Γ ` H holds then H re-
stricted to dom(∪iΣi) is closed under reachability, meaning that
no location in this domain can reference a location outside of it.

6.4 Soundness
We now outline the key parts of our type soundness proof. Com-
plete proofs can be found in the appendix. Type soundness is
proved by the usual Preservation and Progress lemmas. Progress
follows directly from Unique Decomposition, which states that any
well-typed expression is either a value or contains a unique redex,
which can be contracted by the operational rules. Uniqueness also
ensures that our semantics is deterministic.

Lemma 1 (Unique Decomposition). If 〈Σi〉i; Γ `n ben : τ |S
and ben is not a pseudo-value then ben is uniquely decomposed asben = En,m[rm], where = denotes syntactic equality modulo α
conversion.

Proof. By straightforward induction on ben.

The proof of Preservation is more complicated. One technical
difficulty is that the extra Σ added in the rules for binding con-
structs are unrestricted and therefore may include locations that are
not in the current heap. To avoid this problem, we introduce typing
for configurations—pairs of heaps and pseudo-expressions. The
judgment 〈Σi〉i; Γ `n (H, ben) : τ |S then specifies that the config-
uration (H, ben) is well-typed. Configuration typing rules are iden-
tical to pseudo-expression typing rules except that each rule also
requires the heap H to be well-formed under the current context.
For example, the rule for let becomes:

〈〈Σi〉i; Γ `n (H, en
j) : ftypej(C)|S〉j

〈Σi〉i, Σ; Γ, x : Cn `n (H, en) : τ |S 〈Σi〉i; Γ ` H

〈Σi〉i; Γ `n (H, let x ⇐ new C(〈en
j 〉j) in en) : τ |S

A second technical difficulty is that a reduction step inside a let

form or AIC that pushes a new frame Σ onto 〈Σi〉i might modify a
code-free location in dom(∪iΣi) to reference a location in the new
frame Σ. Then the resulting heap is ill-formed under 〈Σi〉i, be-
cause this portion of the heap is not closed under reachability. The
Smashing Lemma solves this problem by smashing the top two Σ’s
of 〈Σi〉i into one, giving a shorter store typing stack. Informally,
it states that the side-effects of a small-step happening inside a dy-
namic binder are invisible from outside except for allocations of
code-free locations.

Lemma 2 (Smashing). If

1. Γ′
1 ∪ Γ′

2 ⊇ Γ1 ∪ Γ2

2. 〈Σi〉Ii ; Γ1|Γ2 ` H1

3. 〈Σi〉Ii , Σ; Γ′
1|Γ′

2 ` H2

4. H1|L = H2|L where L = dom(∪I
i=1Σi)−dom(cf(∪I

i=1Σi))

then 〈Σi〉I−1
i , (ΣI ∪ cf(Σ)); Γ1|Γ2 ` H2.

The different store typing stacks capture different views of the
heap. The stack 〈Σi〉Ii captures the locations that can legally be
referenced outside the binder (the outer view). The stack 〈Σi〉Ii , Σ
captures what can be referenced from inside the binder (the inner
view). Similarly, the variable typing pair Γ1|Γ2 is used outside the
binder while Γ′

1|Γ′
2 is used inside the binder. The inner variable

typing pair contains typings for the new variables in addition to
those in the outer variable typing pair (condition 1). Code inside
the binder may refer to locations that were illegal outside, namely
those with code values that (may) contain free variables in (Γ′

1 ∪
Γ′

2) \ (Γ1 ∪ Γ2). The extra Σ available in the inner view provides
this extension to set of visible locations in the outer view.

Suppose a small-step in the inner context takes the heap from
H1 to H2. Our concern is whether H2 is still well-formed, espe-
cially in the outer view. The heap had better be well-formed at the
beginning in both the inner and outer views; the outer one matters
here (condition 2). After the small-step, we can easily show in the
proof of Preservation that the new heap H2 is well-formed in the
inner view, by a suitable inductive hypothesis (condition 3). Recall
that any new allocations during the small-step are attributed to the
topmost store typing Σ, so the prefix 〈Σi〉Ii remains the same as in
the check on H1. All the code-free restrictions on side effects exist
to ensure that the small-step could not have touched any non-code-
free locations that are visible in the outer view (condition 4). The

lemma then asserts under these conditions that H2 is indeed well-
formed in the outer view, provided that we salvage any new code-
free allocations from Σ into 〈Σi〉Ii . We add these new allocations
to the topmost store typing, ΣI , in compliance with the convention
of only modifying the topmost store typing.

The Smashing Lemma implies the absence of scope extrusion,
as it states that any code locations that could potentially cause scope
extrusion are not reachable outside their respective scopes.

Lemma 3 (Preservation). If 〈Σi〉i, ΣR; Γ1|Γ2 `n (H1, ben
1) : τ |S

and (H1, ben
1)

n
 (H2, ben

2), then ∃Σ′
R such that

1. Σ′
R ⊇ ΣR

2. 〈Σi〉i, Σ′
R; Γ1|Γ2 `n (H2, ben

2) : τ |S
3. H1|L = H2|L where L = dom(∪iΣi)− dom(cf(∪iΣi))

This statement is an abridged version. As mentioned at the be-
ginning of this section, we need freshness assumptions about heap
locations in Σ, and this lemma must be expanded to incorporate
them. The Appendix contains a complete statement and a proof of
this lemma.

7. Implementation
To validate both the expressivity of our type system as well as
the potential usefulness of MSP for Java, we extended the Java
OpenJDK compiler [17] with our proposed type system and with
runtime support for staging. All examples presented earlier in the
paper were type-checked using the implementation described in
this section.

Since we only modified the compiler and maintain full binary
compatibility, the generated class files can be executed with any
Java Runtime Environment, version 6 or higher. The only change
required when running multi-stage programs is the placement of a
small library on the boot classpath, making the compiler for future-
stage code available.

7.1 OpenJDK Modifications
The compiler included in OpenJDK contains a pretty printer geared
towards converting abstract syntax trees (ASTs) to Java source that
can be compiled again. By using the pretty printer, we are able
to generate source for future stages with minimal changes to the
compiler. The fact that we are generating human-readable source
also has debugging benefits.

After the source input has been parsed and entered into symbol
tables, the OpenJDK compiler without our modifications proceeds
in five phases. The Mint compiler adds a sixth stage, called Staging
Translation, yielding the following stages in order:

• Attribution: Names and expressions in the AST are resolved
and types are assigned to the AST nodes. Most type errors are
detected at this stage.

• Flow Analysis: Unreachable code and the use of uninitialized
variables is detected.

• Staging Translation: Brackets are translated into ASTs that cre-
ate code objects. This phase was introduced in the Mint com-
piler and does not exist in the original OpenJDK.

• Type Translation: Generic type information is erased.
• Lowering: “Syntactic sugar” like inner classes and foreach

loops are replaced by simpler constructs.
• Generation: Bytecode is generated for the AST and class files

are written.

The main modifications to the OpenJDK compiler, other than
adding an additional compilation stage, were in Attribution. In At-

tribution, we perform the type-checking necessary for brackets, es-
cape, and run, ensuring specifically that the body of each escape is
weakly separable. Attribution also checks the separability of meth-
ods and constructors declared with the separable modifier and re-
ports errors if unsafe operations are performed. Finally, attribution
also records the stage at which a variable is defined and the stage it
is used: If the variable is used at a later stage than it is defined, it
will either be lifted so it can be inlined directly (in the case of prim-
itive types such as int, boxed types such as Integer, and strings),
or it will be prepared for cross-stage persistence (CSP). If the vari-
able is used in an earlier stage than the one it is defined in, an error
is reported.

7.2 Staging Translation
During Staging Translation, the new compiler stage in the Mint
compiler, each bracket is replaced with a constructor call to
MSPTreeCode<T>, a concrete implementations of Code<T>, which
is given as an interface in Mint. The body of the bracket is passed
to the constructor for MSPTreeCode as a simplified tree in which
most of the AST has been converted into strings using the pretty
printer; only escapes, CSP variables, and variable identifiers to be
gensym-renamed are maintained as separate nodes.

Mint also extends Java to include a let construct to bind values
in an expression, as opposed to a statement block. For instance, the
expression let int x=1, y=2*x; 3*y evaluates to 6, and the scope
of y begins after the comma. Our let construct therefore matches
LISP’s let*. We employ the let construct in our implementation
to store the freshly generated names when we rename variables in
brackets to avoid accidental capture.

For example, in the term

public final class FinalClass {
public int m() { return 5; }

}
//...
final int lifted = 1;
final FinalClass csp = new FinalClass ();
Code <Integer > c = <| 123 |>;
Code <Integer > x = <| let int lv = 1;

2 * lifted + 3 * ‘c + 4 * csp.m() + lv |>;

the body of the bracket in the last two lines is translated into a
data structure containing:

• the string "let int "

• a gensym for lv
• the string "= 1; 2 * "

• the string "1" for the lifted variable
• the string " + 3 * "

• the AST of escaped expression c

• the string " + 4 * "

• the AST of CSP variable csp

• the string ".m() + "

• and a gensym for lv.

The node that represents an escape in a bracket body stores the
AST of the expression that was escaped; a reference to a CSP vari-
able contains the AST of the identifier. Furthermore, all variables
introduced inside brackets are gensym-renamed [5]. For each such
variable that needs to be renamed, a let expression binds a dy-
namically created, fresh name to a string variable (gensym$$1 in
the example below), and the value of that string variable is used
wherever the identifier to be renamed used to occur.

More concretely, the code generated for the last bracket in the
example above is approximately as follows:

Code <Integer > x = let
final String gensym$$1 = varGenSym ();
new MSPTreeCode(new InteriorNode(

new StrTree ("let int "),
new StrTree(gensym$$1),
new StrTree ("= 1; 2 * "),
new StrTree ("1") ,
new StrTree (" + 3 * "),
MSPTreeCode.escape(c),
new StrTree (" + 4 * "),
new CSPTree(csp),
new StrTree (".m() + "),
new StrTree(gensym$$1)

));

This code first creates a gensym called gensym$$1 for the vari-
able lv. It then creates an MSPTreeCode containing a tree of all
the objects mentioned above: StrTree is used for nodes contain-
ing strings, including strings given by gensym$$1 and the con-
tents of lifted variables; CSPTree is used for CSP variables; and
MSPTreeCode.escape(c) is used to implement escapes, by copying
the tree contained in the code object c.

7.3 Run
When a code object is run, the proper values are filled in for
escapes, CSP variables, and gensym-renamed identifiers. The entire
tree is flattened and pasted into a template to create the Java source
of a class implementing Code<T>, with the bracket’s body in its run
method. The name for this class is also generated fresh.

Escapes and gensym-renamed identifiers are simple to process:
The subtrees included by escapes are processed recursively, and
renamed identifiers are treated like strings. CSP variables, on the
other hand, are not in scope inside the new code object and need
to be treated specially: the code object contains CSP fields that
are initialized with copies of the values of the CSP variables in
the constructor. References to CSP variables are replaced with field
accesses.

The source that is compiled when the code object x in the
example above is run looks like this:

public class $$Code1$$
implements Code <Integer > {

private FinalClass cf0;

public $$Code1$$(Object [] t) {
cf0 = (FinalClass)t[0];

}

public Integer run() {
return (let int var$$$1 = 1;

2 * 1 +
3 * (123) +
4 * cf0.m() +
var$$$1);

}
}

The fresh symbol var$$$1 has been substituted for all occurrences
of variable lv. The contents of the escaped code object c and
the lifted variable are present without overhead, as desired. The
reference to the CSP variable csp has been replaced by an access
to the CSP field cf0.

The source is passed as a string to the Mint compiler, where it is
parsed, analyzed and translated as described above. The compiler
then generates bytecode in memory. Since a single compilation unit
in Java may be compiled into several class files, e.g. because of
inner classes, the compiler returns a set of class name-bytecode
pairs. Since anonymous inner classes are assigned names in the
compiler using an internal numbering scheme, the class names have
to be returned along with the generated bytecode.

7.4 Class Loading
The bytecode for the generated classes is added to a hash table,
with the class names used as keys. A custom class loader intercepts
attempts by the Java virtual machine (JVM) to load a class and
checks if the hash table has bytecode available for the requested
class. If so, the bytecode generated by the Mint compiler is used;
otherwise, the custom class loader uses Java’s default class loader,
which attempts to load the class from a file.

A new instance of the generated class is created using reflection
and the values of the CSP variables are passed to the constructor,
filling the code object’s CSP fields. Finally, the new instance’s run
method is called to execute the code in the bracket.

It is important to use the custom class loader for all classes, not
just those generated from brackets. If the same class is loaded by
different class loaders, the JVM considers their instances incompat-
ible and throws a ClassCastException if an object is assigned to a
variable of the same class loaded by another class loader. This prob-
lem can be avoided by installing the custom class loader in a small
launcher application before the program’s main method is executed.
The launcher is included in the runtime library, together with with
the Mint compiler and the Code<T> and SafeCode<T> interfaces.

8. Performance
The timing results presented in this section confirm that MSP can
affect the performance of Java programs in a way similar that
observed in other languages.

8.1 Benchmarks
In order to measure the performance impact of MSP in Mint, we
have benchmarked the following Mint examples:

• power is the power example from Section 2, called with base 2
and exponent 17.

• fib recursively computes the 17th element of the generalized
Fibonacci function starting from 2 and 3.

• mmult performs sparse matrix multiplication, in which every
1 in the left matrix omits the floating-point multiplication at
runtime and every 0 omits the multiplication and the addition.
The benchmark is multiplies an 11-by-11 unsymmetric sparse
matrix [6] with itself.

• eval-fact calculates the factorial of 10 using the lint inter-
preter discussed in Section 5.1.

• eval-fib calculates the 10th number in the standard Fibonacci
sequence using the lint interpreter.

• av-mmult performs the same sparse matrix multiplication as
mmult, but accesses the matrix using the array views described
in Section 5.2.

• av-mtrans performs a matrix transpose using array views.
• serialize uses the serializer generator discussed in Section 5.4

to write the primitive fields contained in an object hierarchy two
levels deep to an output stream.

For each operation in the benchmarking process (unstaged,
staged), we first determine the number of repetitions that are re-
quired for the operation to run for 1-2 s. This calibration phase also
allows the JIT compiler to finish optimizing the program both for
the unstaged and the staged code. We then run as many repetitions
of the operation as determined in the previous step and record the
total time. The average runtime of a single repetition is calculated
for each operation and used for the benchmark.

Timings were recorded on an Apple MacBook with a 2.0 GHz
Intel Core Duo processor, 2 MB of L2 cache, and 2 GB main

Benchmark speedup unstaged µs staged µs
power 9.2 0.060 0.0065
fib 8.8 0.058 0.0065
mmult 4.7 13 2.7
eval-fact 20 0.83 0.042
eval-fib 24 18 0.73
av-mmult 65 20 0.30
av-mtrans 14 1.0 0.071
serialize 26 1.5 0.057

Figure 8. Benchmark results.

memory, running Mac OS 10.4.11 Tiger and the SoyLatte 1.0.3
JVM [24].

8.2 Results
The results are given in Figure 8. Performance improved in all
cases. The speedups, defined as unstaged time divided by staged
time, range from 4.7 to 65. The staged versions of power and fib

executed approximately nine times faster than the unstaged code
due to the removal of recursion. The mmult benchmark involved
mostly tight for loops and could only be sped up by a factor of 4.7.
Staging the lint interpreter removed call overhead and improved
the performance of the eval-fact and eval-fib benchmarks by
factors of 20 and 24, respectively. In the av-mmult and av-mtrans

benchmarks, loops were unrolled and the layer of indirection in the
form of array views was replaced by direct array accesses, resulting
in speedups of 65 and 14, respectively. Finally, the serializer

benchmark also benefited from staging through the removal of
reflection, and execution time was reduced by a factor of 26. These
improvements make it clear that the presence of JIT technology
in Java does not subsume the need for staging techniques, and
that the performance benefits reported in previous work [5, 26] on
languages without JIT technology apply to Java as well.

9. Related Work
A distinguishing feature of Mint is a strong, expressive, and safe
type system that permits both manipulation of open terms and im-
perative programming. Few multi-level imperative languages have
such a type system, and fewer yet come with rigorous type safety
proofs. ‘C [19] and Jumbo [13] do not guarantee well-formedness
of generated code. Cyclone [23] statically guarantees type safety
(including well-formedness) of generated code, but does not treat
code as first-class values. This design helps Cyclone’s runtime code
generator to be very fast and still produce high-quality code, but
limits programmers in the way they can write generators. Other
works on staging extensions to Java by Sestoft [21], Schultz et al.
[20], and Zook et al. [30] focus on exploring novel uses of staging
and/or quantifying performance benefits. As such, these authors do
not attempt to establish safety properties of their extensions.

Some multi-stage systems based on Java offer safety proper-
ties, but formalizations and proofs are often absent or incomplete.
Metaphore [15] comes with a core typed, Java-like calculus but
its type soundness is left unproved. The calculus also leaves out
side effects. SafeGen [10] is claimed to guarantee well-typedness
of generated code, but the authors do not prove such a result or
formalize their system. MorphJ [9] focuses on reflection and does
not allow manipulation of arbitrary code values (in particular open
terms). The paper proves soundness, but the system does not model
side effects. Fähndrich et al. [7] propose a system similar to MorphJ
that allows the user to perform limited manipulations of code val-
ues, using reflection, in a type-safe manner. DynJava [16] has static
type checking for dynamically generated code based on annota-
tions about the types of free variables in code fragments. The au-

thors claim type safety, but do not appear to offer a rigorous proof.
The type annotations also make their code generation system un-
hygienic (i.e. α equivalence fails for dynamic code).

Much of the work on type safety proofs in the literature are for
functional languages, where imperative extensions similarly cause
scope extrusion [2, 3, 11, 12, 14]. Mint either compares favorably
or is competitive with all of these systems. Calcagno et al. [3]
allow imperative operations on code but do not support imperative
operations on open terms. Aktemur [1] and Kim et al. [14] support
unrestricted imperative operations on open terms but give up α-
equivalence for future-stage code. Kim et al. delegate hygiene to a
specialized binder λ∗, whose semantics can be explained only in
terms of a “gensym.” Type terms also tend to be very large in their
systems which may limit the programmer’s ability to write down
or interpret types and correct type errors; this problem is offset to
some extent, however, by type inference. Aktemur’s and Kim et
al.’s systems allow storing open terms in global variables that can
(potentially) outlive the scope of the variables they contain, which
cannot be done in Mint. However, we are not aware of any use for
this technique, apart from examples by Kim et al. that deliberately
violate hygiene [14]. Unhygienic generation brings up the problem
of inadvertent variable capture, and preventing it is a desirable
feature of MSP.

Ancona and Moggi [2] and Kameyama et al. [11, 12] are the
only works we know of that combine imperative operations on open
terms and α-equivalence. Kameyama et al.’s approach [12] is clos-
est to the weak separability approach presented in this paper, in that
they limit the effects allowed within escapes. What distinguishes
Mint from Ancona and Moggi’s and Kameyama et al.’s systems is
that Mint allows effects occurring in escapes to be visible outside
the escapes as long as they do not involve code objects, whereas
Ancona and Moggi and Kameyama et al. unconditionally prohibit
such effects. This difference makes our system more expressive,
which is demonstrated in Section 5.1, where we throw an excep-
tion in a code generator, and in Section 5.2, where we accumulate
code in a for-loop. Neither Ancona and Moggi’s nor Kameyama
et al.’s system can directly express either of these examples. Even
if we consider extending these systems, it is unclear how to extend
them to handle Section 5.1’s example. To allow the example in Sec-
tion 5.2, their calculi must incorporate arrays, which is a nontrivial
theoretical exercise. Our type system is thus better suited to Java
programming, which in general makes heavy use of effects.

Furthermore, Kameyama et al. take delimited control operators
as the primitives for effects, which are not found in mainstream
languages like Java. In order to track the use of delimited control
operators, they must use an effect type system, which complicates
types and typing rules. It is true that delimited control allows
Kameyama et al. to express computations that are not easy to
transcribe to assignment-based systems like Mint; however, the
advantage of their system is in the underlying imperative primitive
and is not in an essential limitation of the weak separability idea
itself.

Ancona and Moggi’s system executes effects within dynamic
binders not at code generation time but at the time the generated
code is run. In other words if dynamic binders are involved, Ancona
and Moggi’s system cannot express effectful code generators al-
though it can express generators that generate effectful code. Their
system is similar to Aktemur’s [1] and Kim et al.’s [14] in that they
use fresh names. All such calculi currently require explicitly listing
the free variables in the code type, and explicitly managing hy-
giene and free variables explicitly in terms. Most importantly, the
extra constraints in the type require polymorphism and structural
subtyping to be introduced in the language. Mainstream object-
oriented languages such as Java and C# support nominal subtyping,
not structural subtyping.

10. Conclusion
This paper has proposed a practical approach to adding MSP to
mainstream languages in a type-safe manner that prevents scope
extrusion. The approach is simpler than prior proposals, and we
expect that it will be easily and intuitively understood by program-
mers. The key insight is that safety can be ensured with weak sepa-
rability, which places straightforward restrictions on the forms and
types of computational effects that occur inside escape expressions,
so that these effects cannot cause code to leak outside of escapes.
The proposal has been validated both by proving that weak separa-
bility is enough to ensure safety and by demonstrating by example
that many useful MSP applications can still be written that adhere
to these restrictions.

A future direction for this work is to try to simplify the idea of
weak separability to more closely match the intuition behind the
concept. We believe there is some system similar to environment
classifiers, in which quantifying on type variables can be used to
implicitly capture the property that we wish to express. Instead
of quantifying a type variable at the occurrence of run() as in
environment classifiers, however, we believe that weak separability
can be expressed by quantifying a type variable at the occurrence
of an escape. This would simplify the type system and possibly add
more expressive power to the language.

Acknowledgments
We thank Yannis Smaragdakis, Julia Lawall and Samuel Kamin
for their helpful comments. We thank the anonymous reviewers for
their valuable feedback.

References
[1] Baris Aktemur. Type Checking Program Generators Using the

Record Calculus, 2009. http://loome.cs.uiuc.edu/pubs/
transformationForTyping.pdf.

[2] Davide Ancona and Eugenio Moggi. A fresh calculus for name man-
agement. In GPCE ’04: Proceedings of the 3rd International Confer-
ence on Generative Programming and Component Engineering, vol-
ume 3286, pages 206–224, 2004.

[3] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. Closed Types
as a Simple Approach to Safe Imperative Multi-stage Programming.
In ICALP ’00: Proceedings of the 27th International Colloquium on
Automata, Languages and Programming, pages 25–36, 2000.

[4] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like infer-
ence for classifiers. In ESOP ’04: Proceedings of the 13th European
Symposium on Programming, pages 79–93, 2004.

[5] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Im-
plementing multi-stage languages using asts, gensym, and reflection.
In GPCE ’03: Proceedings of the 2nd International Conference on
Generative Programming and Component Engineering, pages 57–76,
New York, NY, USA, 2003. Springer-Verlag New York, Inc.

[6] Tim Davis and Yifan Hu. The University of Florida Sparse Ma-
trix Collection. http://www.cise.ufl.edu/research/sparse/
matrices/Pajek/Tina DisCal.html.

[7] Manuel Fähndrich, Michael Carbin, and James R. Larus. Reflective
program generation with patterns. In GPCE ’06: Proceedings of
the 5th International Conference on Generative Programming and
Component Engineering, pages 275–284, 2006.

[8] Habanero Multicore Software Research Project.
http://habanero.rice.edu.

[9] Shan Shan Huang and Yannis Smaragdakis. Expressive and safe
static reflection with MorphJ. In PLDI ’08: Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 79–89, 2008.

[10] Shan Shan Huang, David Zook, and Yannis Smaragdakis. Statically
safe program generation with safegen. In GPCE ’04: Proceedings

of the 3rd International Conference on Generative Programming and
Component Engineering, pages 309–326, 2005.

[11] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung chieh Shan. Closing
the stage: from staged code to typed closures. In PEPM ’08: Proceed-
ings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation, pages 147–157, 2008.

[12] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung chieh Shan. Shifting
the stage: Staging with delimited control. In PEPM ’09: Proceedings
of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, pages 111–120, 2009.

[13] Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: Run-time code
generation for Java and its applications. In CGO ’03: Proceedings of
the International Symposium on Code Generation and Optimization,
pages 48–56, 2003.

[14] Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic
modal type system for lisp-like multi-staged languages. In POPL ’06:
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 257–268, New York,
NY, USA, 2006. ACM.

[15] Gregory Neverov and Paul Roe. Metaphor: A Multi-stage, Object-
Oriented Programming Language. In GPCE ’04: Proceedings of
the 3rd International Conference on Generative Programming and
Component Engineering, pages 168–185, 2004.

[16] Yutaka Oiwa, Hidehiko Masuhara, and Akinori Yonezawa. DynJava:
Type safe dynamic code generation in Java. In PPL ’01: Proceed-
ings of the 3rd JSSST Workshop on Programming and Programming
Languages, March 2001.

[17] OpenJDK Project. http://openjdk.java.net.

[18] Rice PLT. Mint Multi-stage Java Compiler. Available at
http://www.javamint.org.

[19] Massimiliano Poletto, Wilson C. Hsieh, Dawson R. Engler, and
M. Frans Kaashoek. C and tcc: a language and compiler for dynamic
code generation. ACM Transactions on Programming Languages and
Systems, 21(2):324–369, 1999.

[20] U.P. Schultz and J.L. Lawall C. Consel. Automatic Program Special-
ization for Java. ACM Transactions on Programming Languages and
Systems, 25(4):452–499, 2003.

[21] Peter Sestoft. Runtime code generation with JVM and CLR. Available
at http://www.dina.dk/sestoft/publications.html, 2002.

[22] Jun Shirako, Hironori Kasahara, and Vivek Sarkar. Language exten-
sions in support of compiler parallelization. In Languages and Com-
pilers for Parallel Computing: 20th International Workshop, LCPC
2007, Urbana, IL, USA, October 11-13, 2007, Revised Selected Pa-
pers, pages 78–94, Berlin, Heidelberg, 2008. Springer-Verlag.

[23] Frederick Smith, Dan Grossman, J. Gregory Morrisett, Luke Hornof,
and Trevor Jim. Compiling for template-based run-time code genera-
tion. Journal of Functional Programming, 13(3):677–708, 2003.

[24] SoyLatte Project. http://landonf.bikemonkey.org/static/
soylatte/.

[25] Rok Strniša, Peter Sewell, and Matthew Parkinson. The Java mod-
ule system: Core design and semantic definition. In OOPSLA ’07:
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems and Applications, pages 499–514,
2007.

[26] Walid Taha. A gentle introduction to multi-stage programming. In
DSPG ’03: Proceedings of the International Seminar on Domain-
Specific Program Generation, 2003.

[27] Walid Taha. A gentle introduction to multi-stage programming, part
ii. In Generative and Transformational Techniques in Software Engi-
neering II, 2007.

[28] Walid Taha, Zine el-abidine Benaissa, and Tim Sheard. Multi-
Stage Programming: Axiomatization and Type Safety (Extended Ab-
stract). In ICALP’98: 25th International Colloquium on Automata,
Languages, and Programming, pages 918–929, 1998.

[29] Walid Taha and Michael Florentin Nielsen. Environment classifiers.
In POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, pages 26–37, New
York, NY, USA, 2003. ACM.

[30] David Zook, Shan Shan Huang, and Yannis Smaragdakis. Generating
AspectJ Programs with Meta-AspectJ. In GPCE ’04: Proceedings
of the 3rd International Conference on Generative Programming and
Component Engineering, pages 1–18, 2004.

A. Proofs
We give a detailed proof of Lightweight Mint’s type safety in this
section. Due to space limitations, discussions of a number of subtle
technical details of the type system have been omitted in the main
text.

Notation. The components of a variable typing pair Γ are always
named Γ1 and Γ2, so that Γ = Γ1|Γ2, unless otherwise specified.
Similarly, Γ

′
= Γ′

1|Γ′
2.

We impose some well-formedness convention on the store typ-
ing stacks. The convention in Definition 3 is not essential to proving
type safety but will significantly simplify the presentation as well
as the proof. Definitions 4 and 5 by contrast are essential to the
proof and are followed by a more in-depth discussion. Some of the
lemmas’ statements in the main text needs to be updated in order to
exploit these convention—the updated statements are provided as
necessary.

Definition 3. A store typing stack is well-formed iff all of its code-
free bindings are gathered in the first Σ, and the individual store
typings have pairwise disjoint domains:

I ≥ 2 〈cf(Σi) = ∅〉Ii=2

cf(Σ1) = Σ1 〈dom(Σi) ∩ dom(Σj) = ∅〉i6=j

` 〈Σi〉Ii
.

NB: the requirement I ≥ 2 is just to ensure that the stack has a
nonempty code-free part and a nonempty non-code-free part.

Definition 4. The proof tree PT of a configuration typing judg-
ment satisfies the disjointness criterion if any two store typing
stacks 〈Σi〉Ii and 〈Σ′

j〉Jj that appear in PT have a common pre-
fix of length at least 2 (i.e. ∃K ≥ 2. 〈Σk = Σ′

k〉Kk=1) and the rest
have disjoint domains (〈dom(Σi)∩dom(Σj)〉i,j>K). PT is well-
formed iff it only uses well-formed store typing stacks and satisfies
the disjointness criterion.

Definition 5. A location l is said to appear in PT iff PT uses a
store typing stack that contains l in the domain of the stack’s union.
An l is said to be fresh for PT iff it does not appear in PT . An l is
local to PT iff for any PT ′, if PT and PT ′ are disjoint subtrees of
a well-formed tree, then l is fresh for PT ′. An l is fresh or local in
a configuration typing judgment iff it is fresh or local, respectively,
for some proof tree of the typing judgment.

Note that l is local to PT iff it appears in a Σ that is introduced
in PT as a result of a store typing stack extension within PT . Note
also that this well-formedness concern for derivation trees is only
for configurations, and expression typing derivations are always
well-formed.

We would like to assume that all proof trees and store typing
stacks are well-formed. This does not reduce the expressivity of
the type system because a user program must not contain locations,
and therefore it can be typed by a derivation that only uses store
typing stacks of the form 〈∅, ∅, . . . , ∅〉. This claim is made precise
by the following propositions.

Proposition 4. If an initial configuration is typed as

〈〉; ∅|∅ `0 (∅, e0) : τ |S (∗)

by a not necessarily well-formed derivation and locs(e0) = ∅, then
〈∅, ∅〉; ∅|∅ `0 (∅, e0) : τ |S by a well-formed derivation.

Proof. The expression part contains no locations, so the store typ-
ing stack is only used to type the heap which is empty and is there-
fore well-formed under, and only under, store typing stacks of the
form 〈∅, ∅, . . . , ∅〉. Thus, every configuration typing judgment in
the derivation of (∗) is of the form 〈∅〉Ii ; Γ `n (∅, ben) : bτ |S and

every heap well-formedness judgment is of the form 〈∅〉Ii ; Γ ` ∅.
If we consistently replace I by I +2 in all such judgments, then we
have a derivation tree for 〈∅, ∅〉; ∅|∅ `0 (∅, e0) : τ |S. The typing
derivation constructed here is clearly well-formed.

Note that Proposition 4 starts by assuming typability under 〈〉
because that is what we used for program typing in Figure 7.

Proposition 5. If M0 appears in a well-typed class C, then
〈∅, ∅〉; this : C0|∅ `0 M0 : mtype(M0)|S by a derivation
that does not involve ill-formed store typing stacks.

Proof. By hypothesis,

〈〉; ∅|this : C0 `0 M0 : mtype(M0)|S.

By a similar reasoning as Proposition 4, we can prepend 〈∅, ∅〉 to
each store typing stack in the typing derivation, which is necessarily
of the form 〈∅, ∅, . . . , ∅〉.

NB: Proposition 5 replaces the ill-formed store typing stack 〈〉
in the typing for M0 with the well-formed 〈∅, ∅〉.

Hereafter, the assumption that all store typing stacks and typing
derivations are well-formed is in effect. The assumption is needed
for typings of configurations under updated environments to propa-
gate through congruence rules. This statement is formalized below
as Lemma 6. It states that when a small step H1, e1

n
 H2, e2 has

been taken on a subterm e1 of some bigger term, the heap attached
to the typing of any other disjoint subterm can be safely replaced by
H2. We use the well-formedness assumption to establish the pre-
condition (iv) when we invoke this Lemma 6 in the Preservation
Lemma.

We will also update the statements of the Smashing and Preser-
vation Lemmas to observe the well-formedness assumption. The
effect on the Smashing Lemma is mainly simplification rather than
a change in its meaning, while the modification to the Preservation
Lemma is mostly concerned with propagating the well-formedness
conditions.

Lemma 6. Suppose

(i) 〈Σi〉i; Γ `n (H1, ben) : bτ |S
(ii) 〈Σ′

j〉j ; Γ ` H2

(iii) ∪jΣ
′
j ⊇ ∪iΣi

(iv) ∀l s.t. H1(l) 6= H2(l), either l is fresh for (i) or l ∈
dom(∪jΣ

′
j).

Then 〈Σ′
j〉j ; Γ `n (H2, ben) : bτ |S.

Proof. Induction on ben. Base cases are straightforward. For induc-
tive cases, if inversion yields judgments of the form

〈Σi〉i; Γ `n (H1, ben
s) : bτs|S

for each immediate subterm ben
s of ben and suitable bτs, then IH gives

〈Σ′
j〉j ; Γ `n (H2, ben

s) : bτs|S.

If no other form of judgment results from inversion, then we imme-
diately obtain the conclusion.

The only case this argument fails is if a subterm is typed under
an extended environment:

〈Σi〉i, Σ; Γ
′ `n (H1, ben

s) : bτs|S

where Γ′
1 ∪Γ′

2 ⊇ Γ1 ∪Γ2. Then we must check that 〈Σ′
j〉, Σ; Γ

′ `
H2 before invoking the IH. Once we invoke IH, the conclusion is
again immediate.

Take any l ∈ dom Σ. Assuming (i) is well-formed, l 6∈
dom(∪iΣi). Σ is taken from the derivation of (i), so every lo-
cation in dom Σ is not fresh for (i). Thus by (iv), H1(l) = H2(l).

Thus

(i) =⇒ 〈Σi〉i, Σ; Γ
′ ` H1(l) : Σ(l) by inversion

=⇒ 〈Σ′
j〉j , Σ; Γ

′ ` H2(l) : Σ(l). by Σh weakening
and H1(l) = H2(l)

Now take any l ∈ dom(∪jΣ
′
j). We have

〈Σ′
j〉j ; Γ ` H2(l) : (∪jΣ

′
j)(l)

by (ii). Then by Σh and Γh weakenings, we get 〈Σ′
j〉j , Σ; Γ

′ `
H2(l) : (∪jΣ

′
j)(l). Therefore, 〈Σ′

j〉j , Σ; Γ
′ ` H2.

If ben = 〈|en+1|〉, the variable typing’s partitioning bar (|) is
moved but the store typing stack is not extended. In this case, the
argument is essentially the same but we use just ΓH weakening.

Lemma 7 (Σe relevance). If we have 〈Σi〉Ii ; Γ `n ben : bτ |S and
(∪iΣi)|locs(ben) = (∪jΣ

′
j)|locs(ben), then 〈Σ′

j〉Jj ; Γ `n ben : bτ |S.

Proof. Proof is by induction on ben. When looking up a location the
Σ’s are always unioned together, so it clearly only matters what the
union of the stack contains.

The only non-trivial inductive cases are the ones that extend the
store typing stack. Take ben = S′ τ m(〈τk xk〉k){en} for example,
and let L = locs(en). By inversion we have

∃Σ. 〈Σi〉Ii , Σ; Γ1, Γ2, 〈xk : τn
k 〉k|∅ `n en : τ |S′.

Then

((∪iΣi) ∪ Σ)|L = (∪iΣi)|L ∪ Σ|L
= (∪jΣ

′
j)|L ∪ Σ|L

= ((∪jΣ
′
j) ∪ Σ)|L

so we can use IH on en to obtain

〈Σ′
j〉Jj , Σ; Γ1, Γ2, 〈xk : τn

k 〉k|∅ `n en : τ |S′.

The conclusion immediately follows.

Lemma 8 (Γe weakening). If 〈Σi〉i; Γ `n ben : bτ |S and Γ′
i ⊇ Γi

(i = 1, 2) then 〈Σi〉i; Γ
′ `n ben : bτ |S.

Proof. Straightforward induction on ben, noting that part-wise con-
tainment Γ′

i ⊇ Γi is preserved by manipulations of the form
Γ1|Γ2 7→ Γ1, Γ2, Γ

′′|Γ′′′ for Γ′′ and Γ′′′ that are independent of
Γ1 and Γ2.

Lemma 9 (Γh weakening). If (Γ′
1 ∪ Γ′

2)
≥1 ⊇ (Γ1 ∪ Γ2)

≥1 and
〈Σi〉i; Γ ` h : τ then 〈Σi〉i; Γ

′ ` h : τ .

Proof. The variable typing pair is used when h = (Code, 〈|e0|〉),
where

〈Σi〉i; Γ
≥1 `0 〈|e0|〉 : Code〈S , τ ′〉|S′

and τ = Code〈S , τ ′〉, or h = (sub D {〈M0
j 〉j}), in which case

〈〈Σi〉i; Γ
≥1 `0 M0

j : mtype(mname(M0
j), D)〉j .

In both cases, we can replace Γ with Γ
′

by Γe weakening. Notice
that the partitioning bar is moved all the way to the right before the
variable typing has a chance to be looked up, so that the assumption
(Γ′

1 ∪ Γ′
2)
≥1 ⊇ (Γ1 ∪ Γ2)

≥1 is turned into pair-wise containment,
matching the hypothesis of Γe weakening.

Lemma 10 (ΓH weakening). If (Γ′
1 ∪ Γ′

2)
≥1 ⊇ (Γ1 ∪ Γ2)

≥1 and
〈Σi〉i; Γ ` H then 〈Σi〉i; Γ

′ ` H .

Proof. Immediate consequence of Γh weakening.

Lemma 11. If 〈Σi〉i; Γ `n+1 ben : bτ |S then locs(ben) ⊆ dom Σ1.

Proof. Induction on ben. It is evident from the typing rules that we
maintain the invariant that the term can always be seen as lower-
level than the level of the typing judgment, and therefore that the
level of the typing judgment is > 0. Hence when we encounter a
rule that looks up the store typing (i.e. ben = l or (l.f := en)),
it is the case that iscf((∪iΣi)(l)). By the assumption that the
derivation is well-formed, the store typing stack is well-formed,
hence l ∈ Σ1.

Lemma 12 (Σh weakening). If 〈Σi〉i; Γ ` h : τ and ∪jΣ
′
j ⊇

∪iΣi then 〈Σj〉j ; Γ ` h : τ .

Proof. If h = (T, 〈lk〉k) then ∪jΣ
′
j assigns the right types to the lk

since they are all in dom(∪iΣi), where ∪iΣi and ∪jΣ
′
j coincide.

If T = sub D {〈M0
a 〉a} then

〈〈Σi〉i; Γ1|Γ2, this : D0 `0 M0
a : bτa|Sa〉a

where bτa = mtype(mname(M0
a), D), and

locs(sub D {〈M0
a 〉a}) ⊆ dom(∪iΣi) ⊆ dom(∪jΣ

′
j)

so ∪iΣi|locs(T) = ∪jΣ
′
j |locs(T). It follows by Σe relevance that

〈〈Σ′
j〉j ; Γ1|Γ2, this : D0 `0 M0

a : bτa|Sa〉a
thus 〈Σ′

j〉j ; Γ ` sub D {〈M0
a 〉a}. Therefore h is typable under

〈Σ′
j〉j .
If h = (Code, 〈|e0|〉), then 〈Σi〉i; Γ

≥1 `0 〈|e0|〉 : τ ′|S where
τ = Code〈S , τ ′〉. By Lemma 11, locs(〈|e0|〉) ⊆ dom(∪iΣi) ⊆
dom(∪jΣ

′
j), so 〈Σ′

j〉j ; Γ
≥1 `0 〈|e0|〉 : τ ′|S by Σe relevance. It

follows that h is typable under 〈Σ′
j〉j .

A common issue with multi-stage type systems is the fact that
run changes the level of a term dynamic. The Demotion Lemma
ensures that this change does not destroy well-typedness. Since the
code to run is always fetched from the heap, we get well-typedness
of the term from well-formedness of the heap.

Lemma 13 (Demotion). If 〈Σi〉i; ∅|∅ ` (Code, 〈|e0|〉) : Code〈S , τ〉
and 〈Σi〉i; ∅|∅ ` H then 〈Σi〉i; ∅|∅ `0 (H, e0) : τ |S.

Proof. Generalize to:

〈Σi〉i; Γ
≥1 `n+1 ben : bτ |S ∧ 〈Σi〉i; Γ↓ ` H

=⇒ 〈Σi〉i; Γ↓ `n (H, ben) : bτ |S
where Γ↓= Γ1 ↓ |Γ2 ↓ and Γ↓ (x) = τn def⇐⇒ Γ(x) = τn+1. We
prove this by induction on ben.

If ben = x then Γ
≥1

(x) = bτk and 0 < k ≤ n so Γ ↓ (x) =bτk−1. Therefore 〈Σi〉i; Γ↓ `n (H, x) : bτ |S.
If ben = (let x ⇐ new C(〈en

j 〉j) in en) then by IH,
〈〈Σi〉i; Γ↓ `n en

j : τj |Sj〉j . By inversion we have

∃Σ. 〈Σi〉i, Σ; Γ≥1
1 , Γ≥1

2 |x : Cn+1 `n+1 en : bτ |S.

By Lemma 11 and Σe relevance, we may assume Σ = ∅, so by ΓH

weakening, 〈Σi〉i, Σ; (Γ≥1
1 , Γ≥1

2 |x : Cn+1)↓ ` H . Hence we can
use IH to get 〈Σi〉i, Σ; (Γ1, Γ2) ↓ |x : Cn `n (H, en) : bτ |S. The
desired conclusion follows immediately.

If ben = Mn, the argument is essentially the same as for a let.
If ben = new D(〈en

j 〉j){〈M0
k 〉k}, IH gives

〈〈Σi〉i; Γ↓ `n (H, M0
k) : mtype(mname(M0

k), D)|Sk〉k.

For n 6= 0, this is enough to get the conclusion. If n = 0, then
we need dom(∪iΣi) ⊇ locs(sub D {〈M0

k 〉k}) in addition; this is
ensured by Lemma 11.

The remaining cases are straightforward.

The statement of the Substitution Lemma is more or less stan-
dard.

Lemma 14 (Substitution Lemma). Let Γ and Γ
′

be identical,
including the position of the partitioning bar (|), except that
Γ(x) = τ0 and x 6∈ dom Γ

′
. If 〈Σi〉Ii ; Γ `n (H, ben) : bτ |S

and (∪iΣi)(l) = τ and x 6∈ dom Γ2 ∨ l ∈ dom(Σ1 ∪ ΣI), then
〈Σi〉Ii ; Γ

′ `n (H, [l/x]ben) : bτ |S.

Proof. Induction on ben. Note that in each case 〈Σi〉i; Γ
′ ` H is

assured by ΓH weakening.
If ben = x, inversion on the configuration typing gives iscf(τ)∨

n = 0, which is just the premise we need to justify 〈Σi〉i; Γ
′ `n

(H, l) : bτ |S.
If ben = (x.f := en), then bτ = ftype(f, τ) where τ =

(∪iΣi)(l). The typing judgment must have been derived with one
of two rules. If it used the rule for the generic form (en

1 .f := en
2),

then S = insep so by IH, the configuration after substitution can
be typed by the same rule. Otherwise, S = sep, in which case the
binding level 0 of x must equal the typing level n. IH gives

〈Σi〉i; Γ
′ `n (H, [l/x]en) : bτ |sep.

Inversion gives x ∈ dom(Γ2) ∨ iscf(τ). If x ∈ dom Γ2 then
l ∈ dom(Σ1 ∪ ΣI) by hypothesis, thus iscf(τ) ∨ l ∈ dom ΣI .
Therefore, we have

iscf(τ) ∨ (n = 0 ∧ l ∈ dom ΣI),

which establishes

〈Σi〉i; Γ
′ `n (H, (l.f := [l/x]en)) : bτ |sep.

Suppose ben = (let y ⇐ new C(〈en
j 〉j) in en). If x = y,

then the substitution is the identity on this term so the conclusion is
immediate. Otherwise, we have 〈〈Σi〉i; Γ

′ `n (H, [l/x]en
j)bτ |S〉j

by IH. By inversion,

〈Σi〉i, Σ; Γ1, Γ2|y : Cn `n (H, en) : bτ |S.

The store typing stack is extended, so the l is no longer in the
rightmost Σ (if it was in ΣI), but the binding for x is no longer
to the right of the partitioning bar either, so we can apply IH.
This gives 〈Σi〉i; Γ′

1, Γ
′
2|y : Cn `n (H, [l/x]en) : bτ |S. Thus

〈Γi〉i; Γ
′ `n (H, [l/x]en) : bτ |S.

If ben = Mn, the argument is similar to the preceding case.
If ben = newD(〈ej〉j){〈Mn

k 〉k}, the well-typedness of (H, ej)
and (H, Mn

k) follow directly from IH. The only concern left is
whether dom(∪iΣi) ⊇ locs([l/x](sub D {〈Mn

k 〉k})) when n =
0. This clearly holds because the only addition to the set of loca-
tions is l, and l ∈ dom(∪iΣi).

The remaining cases are straightforward.

We need a similar lemma that does not lower the level of the
typing to handle escapes.

Lemma 15 (Augmentation Lemma). If 〈Σi〉i; Γ `n ben : bτ |S
and 〈Σi〉i; Γ ` H and dom(∪iΣi) ⊇ locs(ben) then 〈Σi〉i; Γ `n

(H, ben) : bτ |S.

Proof. Induction on ben. This is just a matter of checking

〈Σi〉i ◦ 〈Σ′
j〉j ; Γ

′ ` H (∗)

for every extended environment 〈Σi〉i ◦ 〈Σ′
j〉j ; Γ

′
that appears

in the derivation of 〈Σi〉i; Γ `n ben : bτ |S. By Σe relevance,

〈Σ′
j〉j = 〈∅, ∅, . . . , ∅〉 without loss of generality. Then ∪iΣi =

(∪iΣi) ∪ (∪jΣ
′
j), so

〈Σi〉i ◦ 〈Σ′
j〉j ; Γ ` H(l) : (∪iΣi)(l)

for every l ∈ dom(∪iΣi) (= dom((∪iΣi) ∪ (∪jΣ
′
j))) by Σh

weakening. Therefore,

〈Σi〉i ◦ 〈Σ′
j〉j ; Γ ` H,

and (∗) follows by ΓH weakening.

We now turn to the Smashing Lemma. We refine its statement
to take advantage of the well-formedness assumptions. The new
lemma still captures the same idea but under a simpler setting: we
need typing of code-containing locations only in the scope of any
future-stage variables that they may refer to, and its proof relies
on the fact that most of the heap has not changed. It is possible
to prove it without the well-formedness assumptions, but it would
only obfuscate the argument.

Lemma 16 (Smashing Lemma (refined)). If

(I) 〈Σi〉Ii ; Γ ` H1

(II) 〈Σ′
i〉I+1

i ; Γ
′ ` H2

(III) ∀l ∈ dom(∪I+1
i=1 Σ′

i). H1(l) 6= H2(l) =⇒ l ∈ dom(Σ′
1 ∪

Σ′
I+1)

(IV) Σ′
1 ⊇ Σ1 ∧ Σ′

I+1 ⊇ ΣI+1 ∧ 〈Σ′
i = Σi〉Ii=2

where H1(l) 6= H2(l) includes the case where one side of the
inequality is defined while the other is not, then

〈Σ′
i〉Ii ; Γ ` H2.

Proof. For every location l ∈ dom(∪I
i=1Σi) such that H1(l) =

H2(l), we have

〈Σi〉Ii ; Γ ` H2(l) : (∪I
i=1Σi)(l)

by (I), and we can replace the store typing stack with 〈Σ′
i〉Ii due to

Σh weakening.
For any other l ∈ dom(∪I

i=1Σi), (III) tells us that l ∈ dom Σ′
1

so (∪I
i=1Σ

′
i)(l) = Σ′

1(l) and iscf(Σ′
1(l)). It follows that Σ′

1(l) =
F and by (II), H2(l) = (F, 〈lk〉k). Moreover, ∀k. iscf(ftypek(F))
so iscf((∪iΣi)(l)), hence lk ∈ dom Σ′

1. Therefore, H2(l) is well-
formed under any well-formed store typing stack starting with Σ′

1,
including 〈Σ′

i〉Ii .
Thus 〈Σ′

i〉Ii ; Γ ` H2.

Finally, we are ready to prove Preservation. As noted in the main
text, there are some invariants that are not captured in the statement
of Lemma 3. We give a complete statement here.

Lemma 17 (Preservation (extended version)). If

(I) 〈Σi〉Ii ; Γ `n (H1, ben
1) : bτ |S

(II) H1, ben
1

n
 H2, ben

2

(III) S = sep ∨ Γ
>n

= ∅|∅
(IV) Γ = Γ

≥1

then ∃〈Σ′
i〉Ii such that

(i) 〈Σ′
i〉Ii ; Γ `n (H2, ben

2) : bτ |S
(ii) Σ′

1 ⊇ Σ1 ∧ Σ′
I ⊇ ΣI ∧ 〈Σ′

i = Σi〉I−1
i=2

(iii) H1(l) 6= H2(l) =⇒ (l 6∈ dom H1) ∨ (l ∈ dom(Σ1 ∪
ΣI)) ∨ (l is local to (I)).

where H1(l) 6= H2(l) includes the case where one side of the
inequality is defined but not the other.

Proof. Induction on the evaluation context En,k. Conclusion (ii)
will be obvious for each case, so we will not explicitly write out its
justification.

We first handle primitive reductions. There are three forms that
extend the heap, all at n = 0. The only point of change on the heap
for these case is the new location, which is fresh for H1. Therefore
(iii) holds, and only (i) remains to be proved.

• Suppose ben
1 = new D(〈lj〉j){〈M0

a 〉a}. Then ben
2 = l 6∈ H1

and bτ = D. Take Σ′
1 = Σ1 and Σ′

I = ΣI [l 7→ D]. For every
l′ 6= l, we have H1(l

′) = H2(l
′) so by (I) and Σh weakening,

〈Σ′
i〉Ii ; Γ ` H2(l

′) : D.

For H2(l) = (sub D {〈M0
a 〉a}, 〈lj〉j), by inversion on (I)

we know that both the tag and the fields are well-typed under
〈Σi〉i; Γ, so that the heap element itself is well-typed. Thus by
Σh weakening,

〈Σ′
i〉Ii ; Γ ` H2(l) : D.

This shows that 〈Σ′
i〉Ii ; Γ ` H2. By inversion,

locs(sub D {〈M0
a 〉a}) ⊆ dom(∪iΣi) ⊆ dom(∪iΣ

′
i).

All the other premises needed to justify (i) is directly obtained
from IH.

• Suppose ben
1 = (let x ⇐ new C(〈lj〉j) in en). Then ben

2 =
[l/x]e0 and l 6∈ dom H1 and 〈lj ∈ dom(∪iΣi)〉. By inversion

∃Σ. 〈Σi〉i, Σ; Γ1, Γ2|x : C0 `0 (H1, e
0) : bτ |S. (∗1)

If iscf(C), take Σ′
1 = Σ1[l 7→ C] ∧ Σ′

I = ΣI ∪ Σ. If not, take
Σ′

1 = Σ1 ∧ Σ′
I = ΣI ∪ Σ[l 7→ C]. In either case, (iii) and

∪iΣ
′
i ⊇ (∪iΣi) ∪ Σ.

For every l′ ∈ dom(∪iΣ
′
i) such that l′ 6= l, H1(l

′) = H2(l
′)

so

〈Σ′
i〉i; Γ1, Γ2|x : C0 ` H2(l

′) : (∪iΣ
′
i)(l)

by (∗1) and Σh weakening. We also have 〈Σ′
i〉Ii ; Γ1, Γ2|x :

C0 ` (C, 〈lj〉j) : C because 〈(∪iΣ
′
i)(lj) = (∪iΣi)(lj) ≺

ftypej(C)〉j , so

〈Σ′
i〉i; Γ1, Γ2|x : C0 ` H2. (∗2)

l is fresh in H1 so it is fresh in (∗1). Thus by (∗1), (∗2), we can
use Lemma 6 to get

〈Σ′
i〉i; Γ1, Γ2|x : C0 `0 (H2, e

0) : bτ |S.

Then, noting that l ∈ dom(Σ′
1 ∪ Σ′

I), we have

〈Σ′
i〉i; Γ1, Γ2|∅ `0 (H2, [l/x]e0) : bτ |S

by the Substitution Lemma. By Lemma 18, we can move the
partitioning bar to the left, thus

〈Σ′
i〉i; Γ `0 (H2, [l/x]e0) : bτ |S.

• Suppose ben
1 = 〈|e0|〉. Then ben

2 = l 6∈ dom H1 and bτ =
Code〈S ′, τ〉. Take Σ′

1 = Σ1 and Σ′
I = ΣI [l 7→ Code〈S ′, τ〉].

By (I) and (IV), we have

〈Σ′
i〉i; Γ

≥1 `0 〈|e0|〉 : Code〈S ′, τ〉|S

so the new heap element (Code, 〈|e0|〉) is well-formed. All
other locations are unmodified, so they are well-formed under
〈Σ′

i〉i; Γ by Σh weakening. Thus 〈Σ′
i〉i; Γ ` H2, therefore

〈Σ′
i〉i; Γ `0 (H2, l) : Code〈S ′, τ〉|S.

There is one case that modifies the heap without extending it:

• Suppose ben
1 = (l.fj0 := l′). Then ben

2 = l′ and H1(l) =
(T, 〈lj〉j). By inversion iscf((∪iΣi)(l)) ∨ (l ∈ dom ΣI),
and the first disjunct implies l ∈ Σ1, so (iii) holds. Take
〈Σ′

i = Σi〉i. The updated heap element (T, 〈lj〉j [j0 7→ l′])
is well-formed because by inversion (∪iΣi)(l

′) ≺ ftypej0
(τ),

where τ = (∪iΣi)(l). The other locations are unchanged so
they remain well-formed. Thus H2 is well-formed, and we have

〈Σ′
i〉i; Γ `0 (H2, l

′) : bτ |S.

For all other primitive reductions, we have H1 = H2 so with
Σ′

1 = Σ1 and Σ′
I = ΣI , (ii) and (iii) hold.

• Suppose ben
1 = l.fj0 , where n = 0 and H1(l) = (T, 〈lj〉j). By

inversion (∪iΣi)(lj0) ≺ bτ so 〈Σ′
i〉i; Γ `0 (H2, lj0) : bτ |S.

• Suppose ben
1 = l.m(〈lj〉j) where H1(l) = (T, 〈l′a〉a). Let

mbody(m, T) = (〈xj〉Jj , e0) and τ = (∪iΣi)(l). By inver-

sion, mtype(m, τ) = 〈τj〉Jj
S→ bτ where 〈(∪iΣi)(lj) ≺ τj〉j .

If T = sub D {〈Mc〉c} and m = mname(Mc0), then

mtype(m, sub D {〈Mc〉c}) = mtype(m, D) = 〈τj〉Jj
S→ bτ

because class well-formedness rules require method overrides
to preserve types. Thus

〈Σi〉i; Γ1, Γ2|this : D0 `0 Mc0

=⇒ 〈Σi〉i; Γ1, Γ2, this : D0, 〈xj : τ0
j 〉Jj |∅ `0 e0 : τ |S.

We also have dom(∪iΣi) ⊇ locs(e0) from well-formedness of
H1. ΓH weakening gives

〈Σ′
i〉i; Γ1, Γ2, this : D0, 〈xj : τ0

j 〉Jj |∅ ` H2

so by the Augmentation Lemma,

〈Σ′
i〉i; Γ1, Γ2, this : D0, 〈xj : τ0

j 〉Jj |∅ `0 (H2, e
0) : τ |S.

Using the Substitution Lemma J + 1 times, we get

〈Σ′
i〉i; Γ1, Γ2|∅ `0 (H2, [l/this][〈lj〉Jj /〈xj〉Jj]e0) : τ |S.

If m does not match one of the 〈Mc〉c, or if T = C, then the
method implementation comes from the static class hierarchy,
P . In that case, by Proposition 5

〈∅, ∅〉; this : τ0, 〈xj : τ0
j 〉j |∅ `0 e0 : bτ |S.

By Σe relevance and Γe weakening,

〈Σ′
i〉i; Γ1, Γ2, this : τ0, 〈xj : τ0

j 〉j |∅ `0 e0 : bτ |S.

Then repeating the argument using the Augmentation and Sub-
stitution Lemmas gives (i).

• Suppose ben
1 = ‘l and H1(l) = (Code, 〈|e0|〉). Then n = 1, and

since H1 is well-formed, we have 〈Σ′
i〉i; Γ `1 e0 : bτ |S using

Lemma 18. Then by Lemma 11 locs(e0) ⊆ dom(∪iΣi) so by
the Augmentation Lemma, 〈Σ′

i〉i; Γ `1 (H2, e
0) : bτ |S.

• Suppose ben
1 = en.run(). Then n = 0 and S = insep and

H1(l) = (Code, 〈|ben
2 |〉). By (III) and (IV), Γ = ∅|∅. Then by

well-formedness of H1,

〈Σ′
i〉i; ∅|∅ ` (Code, 〈|ben

2 |〉) : Code〈S , bτ〉.
H1 = H2 so by the Demotion Lemma 〈Σ′

i〉i; Γ `0 ben
2 : bτ |S.

We now consider non-trivial evaluation contexts. Let ben
1 = En,k[rk]

and ben
2 = En,k[ek].

• Suppose En,k = (let x ⇐ new C(〈vn
j 〉j) in En,k

e). Then
necessarily n > 0. By inversion,

〈〈Σi〉i; Γ `n (H1, v
n
j) : ftypej(C)|S〉j (∗3)

∃Σ. 〈Σi〉i, Σ; Γ1, Γ2|x : Cn `n (H1, En,k
e [rk]) : bτ |S (∗4)

and the derivations of these are disjoint subtrees of (I).
We want to apply IH to (∗4), but to do so we must check (III)
and (IV). Because n > 0 the x : Cn is not a level-0 binding,
hence (IV) holds for the subconfiguration. If S = insep then
Γ

>n
= ∅|∅ so (Γ1, Γ2|x : Cn)>n = ∅|∅ so (III) is satisfied.

Therefore, by IH(i) (that is, conclusion (i) of IH), ∃〈Σ′
i〉I+1

i

such that

〈Σ′
i〉I+1

i ; Γ1, Γ2|x : Cn `n (H2, En,k
e [ek]) : bτ |S.

By IH(iii), ∀l ∈ dom(∪iΣ
′
i). H1(l) 6= H2(l) implies l ∈

dom(Σ′
1 ∪ Σ′

I+1). Thus by the refined Smashing Lemma,
〈Σ′

i〉Ii ; Γ ` H2.
Also by IH(iii), any l that H1 and H2 disagree on satisfy one
of:

l 6∈ dom H1, in which case l is fresh for (∗3) because the
domain of store typings in a configuration typing is bounded
by the domain of the heap.
l is local to (∗4), in which case it is fresh in (∗3) because
they are disjoint subtrees.
l ∈ dom(Σ1 ∪Σ). If l ∈ dom Σ1 then l ∈ dom(Σ′

1 ∪Σ′
I).

Else l ∈ Σ implies that l is fresh for (∗3) because it is a
subtree of (I) that is disjoint from (∗4), and Σ is introduced
at the root of (∗4).

Hence l is fresh in (∗3) or l ∈ dom(∪I
i=1Σ

′
i). Therefore, by

Lemma 6,

〈〈Σ′
i〉Ii ; Γ `n (H2, e

n
j) : ftypej(C)|S〉j

which is the last piece needed for (i).
〈Σ′

i〉Ii satisfies (ii) because 〈Σ′
i〉I+1

i obeys IH(ii). It also satis-
fies (iii) because by IH(iii), H1(l) 6= H2(l) ensures one of three
conditions:

l 6∈ dom H1.
l ∈ dom(Σ1 ∪Σ). If l ∈ dom Σ1 then l ∈ dom(Σ1 ∪ΣI).
If l ∈ Σ, then it is local to (I).
l is local to (∗4). Then it is also local to the supertree, (I).

• If En,k = En,k
M , the argument is mostly a repetition of the

previous case.
• The remaining cases are all straightforward. We simply use IH

to obtain 〈Σ′
i〉Ii , and apply Lemma 6 to see that the subterms

that did not participate in the small step remain well-typed if
we augment them with H2.

This concludes the proof.

Lemma 18. If 〈Σi〉i; Γ1, Γ2|∅ `n (H, ben) : bτ |S holds, then
〈Σi〉i; Γ1|Γ2 `n (H, ben) : bτ |S.

Proof. Straightforward induction on ben. The partitioning bar is ir-
relevant for checking heap well-formedness (as seen by ΓH weak-
ening), and the only typing rule that uses the bar, the one for
(x.f := en), only becomes more permissive when the bar is moved
to the left. Typing rules that move the bar always move it all the
way to the right (and perhaps adds new bindings on the right end)
so the invariant is maintained that the typing judgment in the hy-
pothesis has the bar farther to the left than the judgment in the con-
clusion.

