
Assignments for an Objects-First
Introductory Software Engineering Curriculum

Mathias Ricken
Department of Computer Science, Rice University

mgricken@rice.edu

Abstract
Designing an effective curriculum to teach software engineering to beginning students is

challenging. An objects-first course prepares students in an excellent way for the software
engineering requirements in industry and academia by focusing on program design, thereby
enabling students to write correct, robust, flexible, and extensible software. This paper
outlines the effects of an object-oriented approach on software quality and describes three
assignments that can be used as teaching tools in an objects-first course to evaluate and
reinforce a student’s understanding.

1. Introduction

The role of software engineering in computer science education has been a hotly
debated topic. Traditionally, programming is taught in an imperative-first style that
focuses on programming language syntax and other mechanistic details. Software
engineering principles, however, are relegated to upper-level courses.

The ACM/IEEE-CS Report on Computing Curricula 2001 [1] established that
introductory courses are often too concerned with language syntax and do not
adequately teach design. Because of this focus, imperative-first courses frequently use
overly simple assignments that do not motivate students, misrepresent the nature of
software engineering, and provide students with too little practice of designing, testing,
and documenting their programs. The Software Engineering 2004 Curriculum
Guidelines [2] further explain that the programming techniques and processes
commonly taught do not scale well past the simple examples used in class.

An alternative objects-first introductory curriculum that combines an early focus on
object-oriented (OO) design and programming with unit testing and documentation can
alleviate many of the concerns voiced in these reports. Such a curriculum can only be
successful, though, if students face interesting and sufficiently complex problems that
clearly show the beneficial effects of OO technology on important software engineering
quality factors.

2. Software Engineering Quality Factors

Software needs to exhibit certain qualities, which can be external or internal to the
program. External factors are visible to a user and include correctness and robustness.
Internal quality factors are apparent only to the developer and are important in the
implementation and extension of the product. Flexibility, extensibility, testability, and
documentation fall into this group. Ultimately, only external quality factors are of
immediate interest to a user, but in order to create a program that offers these factors in
a timely, cost-effective fashion, developers need to focus on the internal factors as well.

An OO approach to software development can improve the quality factors mentioned
above by providing means of managing the program’s complexity, thus enhancing the overall

mailto:mgricken@rice.edu

quality of the program. The effects of object orientation on several software engineering
quality factors are evaluated below.

2.1. Correctness

Correctness describes the ability of the program to perform its task in accordance with the
program specifications and therefore serves as indispensable quality attribute. While it
remains difficult to produce large systems without defects, OO design and programming
moderate the problem through the use of abstraction and modularity. Both of these principles
allow the developer to understand and design parts of the program in isolation.

Abstraction reduces a system’s complexity by highlighting commonalities (invariants)
among similar problems and ignoring differences (variants). OO design enables the developer
to encode these invariants in concrete portions of a superclass, which deals with the varying
portions abstractly and without having to know what they do or how they are implemented.
The variants are then placed in subclasses. This separation ensures that invariants cannot be
changed, causing the program to be both correct and simpler to understand.

Modularity divides a system into several independent pieces that communicate with each
other only via a small, well-defined interface. The use of interfaces as means of
communication lets a module deal with other portions of the system at an abstract level,
strictly delineating a module’s responsibilities. Such loose and abstract coupling between
modules limits the knowledge of other objects and thus assists in the maintenance of
invariants. A modular design also removes the necessity for developers to be familiar with the
entire system by reducing dependencies between portions of the code, thus fostering
independent and concurrent development.

2.2. Robustness

Robustness is a system’s ability to withstand both accidental and intentional abuse while
continuing to function in a well-defined, non-catastrophic manner. Robustness deals with
unexpected situations, in contrast to correctness, which derives from system behavior in states
covered by the specifications.

Robustness follows from information hiding and a clear delineation of responsibility. The
system must be set up to prevent an object from performing actions that are outside its
domain, thereby guaranteeing that it cannot adversely affect other components of the system.
This guarantee alleviates the need for programmatic value checking in many different places,
something easily forgotten when a program grows. Information hiding and delineation of
responsibility are design aspects, though; therefore, robustness must be built into the system
from the very beginning.

It is hard to design a system that is robust and also flexible and extensible: A design that
prevents a system from leaving a well-defined set of states appears resilient to change. If,
however, the system makes use of abstraction and modularity, the variants can be changed
without undermining the structure enforced by invariant code. Again, the correct
decomposition of a problem into variants and invariants leads to the proper abstractions.

2.3. Flexibility and Extensibility

Flexibility and extensibility are important internal quality factors. A flexible system
can be changed in one area without breaking other parts or requiring a large number of
changes elsewhere. An extensible system can easily be augmented to fulfill new
requirements without necessitating changes to the existing portions.

As programs become more complex, the ability to leverage design and code from
previous projects and to extend them beyond the original specifications becomes more
important. Developers should therefore strive to solve not only a single instance of a
problem, but a family of related problems. Again, abstraction and modularity are
principles necessary to achieve this. Abstraction allows the developer to generalize a
solution for a specific task and apply it to similar ones, and modularity minimizes an
object’s dependence on other objects with which it interacts, making the object
replaceable and reusable.

2.4. Documentation and Testing

Like flexibility and extensibility, documentation and testing are becoming more
important as the projects size grows. Unfortunately, internal documentation is often
neglected both in software engineering courses and in the industry, even though it is
necessary for maintaining a correct and robust solution. The extended life-time of a
project gained by flexible and extensible designs further exacerbates this problem, since
the behavior of the system must be understood at a later time and often by different
developers.

Commenting styles such as Javadoc [3] allow developers to place documentation
directly in the code. An external program then automatically processes these comments
to create a set of independent and convenient documentation files. This removes the
burden of creating the documentation in a separate step and keeps it synchronized with
revisions of the code.

Similarly, unit tests can be placed directly in the code to facilitate integration and
regression testing. The use of a unit testing framework like JUnit [4] provides an
automated way to ensure that a change has no negative effects on the system. Coverage
tools like Clover [5] point out program parts that benefit most from additional tests. The
two practices of creating unit tests before a program bug is fixed and requiring all unit
tests to succeed before code can be committed prevent bugs from reappearing and keep
the central repository clean. Unit tests can also be used to provide a more detailed
version of the specification and internal documentation, providing both expected results
and usage examples.

While documentation and testing are not directly related to an OO approach to
software development, their application in the ways described above as part of Extreme
Programming [6] is much more prevalent in the OO culture than in the traditional
imperative one. It is interesting to note that an imperative-first course, which needs
simple examples, to a certain extent prevents a focus on flexibility, extensibility,
documentation, and testing, while an objects-first course with its demand for
sufficiently complex assignments requires paying attention to these quality factors.

3. Suitable Assignments

As the previous section has described, OO concepts can improve the quality factors
important to software engineering. Unfortunately, many institutions only provide an
upper-level course on “OO methodologies”. At this time, however, students are unable

to leverage the benefits of object orientation. They possess the intellectual capabilities
and the knowledge to use classes, inheritance, and so on, but they fail to see the
advantages. This is partially due to the limited time spent on the topic and the small
exercises used. To demonstrate the importance of quality factors such as robustness,
flexibility, and extensibility, exercises must go beyond small-scale programs.

Finding suitable assignments for an objects-first software engineering curriculum is
problematic. The exercises need to demonstrate the positive effect of an OO approach
to software quality while remaining within the limited scope of the learning students.
Below, we describe three sufficiently complex yet entertaining assignments that can be
used in objects-first introductory courses. The Temperature Calculator is intended for
an objects-first CS1 course; the other two assignments can be used in CS2 courses.

3.1. Necessary Skills

It is important that the assignments described below are given in the context of a
comprehensive instruction in OO design and programming. To successfully complete
the assignments, students should possess a solid understanding of inheritance,
polymorphism, composition, closures, anonymous inner classes, and delegation model
programming. Most of the assignments also require the use of several design patterns,
such as composite, visitor, state, singleton, strategy, decorator, template method,
abstract factory, and factory method [7]. Since all of the assignments involve GUI
programming, the model-view-controller (MVC) pattern is also used extensively.

3.2. Temperature Calculator

The Temperature Calculator assignment [8] consists of a series of applications that
convert temperatures from one scale to another. We use this assignment as a 90-minute
laboratory exercise that extends into a weeklong homework assignment, which takes
students 6 to 8 hours to complete. At the time this assignment is used, students should
be acquainted with the factory method, template method, and command patterns.

To illustrate the importance of programming for change—how focusing on internal
software quality factors moderates problems with software growth—we guide the
students through the development of a program that converts measurements from one
unit to another. The programming assignment consists of a series of exercises, each of
which imposes a small change in the requirements and forces some appropriate
modification on the implementation code. The initial task is the simple conversion of
35° Celsius to Fahrenheit, but the assignment quickly progresses to require dynamically
loaded temperature scales that can be compiled later and loaded into the program using
reflection. The project culminates in a generalized unit converter that can also process
lengths, volumes, and so on. We require the program to be robustly designed and
prevent the conversion of, for example, meters to gallons.

To promote code re-use, we apply the Janus Principle [9] and require that the
program can support at least two distinct user interfaces: a GUI interface and a
command line interface. In many situations, we require the students to modify their
code in more than one way and to discuss the advantages and disadvantages.

The incremental nature if the assignment demonstrates how program requirements
can change during a project’s lifetime, and how flexibility and extensibility can make
implementing these changes simpler.

3.3. Games for Two

The Games for Two assignment [10] presents students with a framework for playing
two-person turn-based board games on a finite rectangular grid. The project is set up as
a GUI application that is flexible and extensible enough to support both human and
computer players for arbitrary games that fit the description above. The two examples
used in this exercise are Connect–n and Othello.

The project is broken down into two milestones. The first milestone asks students to
instantiate the client side of a façade pattern [7] that hides the internals of the game
model from players using it. They also need to finish developing the skeleton Connect–
n board model by implementing methods to make a move and check its validity.
Finally, students should improve the provided random move strategy to only choose
from valid moves; the sample solution chooses from all moves, valid or invalid.

For the second milestone, students apply the strategy pattern to write intelligent
computer players using the min-max principle, alpha-beta pruning, and depth-limited
search. Students are directed towards a high degree of code re-use, which can be
achieved by implementing the alpha and beta accumulators as subclasses of the max
and min accumulators, respectively. Depth-limited search uses a decorator pattern and
can be used in conjunction with any other strategy.

Remarkable about these strategies is that they can be used to play both Connect–n
and Othello, and any other game that fits the above description, without modification.
The general two-player round-based game model, the board models for the different
games, and the movement strategies are loosely coupled and communicate only at an
abstract level. In a round-robin fashion, the game model asks the players’ strategies for
a move and then lets the board model execute it. The search strategies simply look for
the best possible move in the current situation, whatever “best” means for a given board
model. Due to their generic implementation, the same strategies can be used in all kinds
of games. This serves as a convincing example of the powers of OO design.

Since the project is aimed at students at the end of CS2, it requires that students are
able to effectively read documentation and analyze an existing framework.

The project also provides students with an opportunity to improve their grades in an
entertaining way: At the end of the semester, students can submit specialized Othello
strategies and let them compete against each other for extra credit. Every semester,
many students participate and voluntarily spend hours fine-tuning their code and thus
their programming skills.

3.4. Refactored Marine Biology Simulation

The refactored Marine Biology Simulation [11] was derived from the Java AP
Marine Biology Simulation Case Study [12] used in high school AP computer science
courses. The original AP case study did not closely follow OO design principles, and it
was therefore necessary to refactor it.

Students work on this project over the course of three weeks for a total of about 10
hours. The project places a strong emphasis on creating a robust, flexible, and
extensible solution by correctly modeling abstraction and loose coupling. It uses an
incremental, test-driven approach that first familiarizes students with the project by
extending the framework, which is initially provided as binary code with
complementing Javadoc. In the later parts of the assignment, students are asked to re-
implement and then improve the framework to achieve additional functionality.

The project provides a framework of 13,000 lines of code and thus possesses the
necessary complexity sought for in a final project that is to illuminate the benefits
gained from object orientation. Its flexible and robust design was achieved by carefully
analyzing the components of the problem and makes use of design patterns such as
command, visitor, abstract factory, decorator, and observer-observable [7] to maintain
loose and abstract coupling. The assignment therefore places much emphasis on the
design aspect of such a system and addresses issues like modeling, components and
frameworks, documentation, and testing.

To make sure the considerable size of the project does not overwhelm students, we
have split the assignment into two milestones. Milestone 1 requires students to extend
the simulation by subclassing while treating most of the framework as a “black box”,
which serves as an example of how a modular system reduces complexity. In the
process of finishing milestone 1, students add a new species of fish and a new type of
environment. Both the fish and the environment behave radically different from
previous classes, yet the changes require less than 200 lines of code, most of which is
boilerplate code.

For milestone 2, students receive the entire framework as source code, which also
includes solutions to the problems from milestone 1. Some portions of the framework,
however, have been removed and contain only stub code. In the first part of
milestone 2, students need to understand the system internals and how the fish and the
environment cooperate while remaining decoupled. By re-implementing the portions of
the framework that have been stubbed out, students take a grand tour of the system and
see how message passing, abstract coupling through interfaces, and several design
patterns fit together. The different parts that have been removed were selected to
produce a large range of different program failures and thus expose students to different
situations requiring debugging: In some cases, a method is not implemented, causing a
rupture in the code path, in others a data structure is used improperly, breaking the data
flow. Students can use the unit tests provided by the project to continuously monitor
their progress and the correctness of their work, while still having to research and
implement the system on their own. The test cases offer error messages and hints in
plain English but do not reveal the solution.

In the final part of the assignment, students improve the simulation by adding more
functionality. This requires changing the fish hierarchy to implement behavior not by
inheritance but by delegation. In the course of this exercise, students again experience
how separating variants from invariants makes a system both more flexible and less
complex.

As a final project for a CS2 course, the assignment presupposes that students have
been taught the basic OO skills mentioned in Section 3.1, as well as additional design
patterns, especially command and factory method [7]. Design, documentation and
testing tools, such as UML, Javadoc and JUnit, respectively, must also be addressed.

Instructors will need to ensure their students understand the concept of a “local
environment” and how it is modeled. Students also inquired about the callback-style
communication between a fish and its environment, which provides the opportunity to
use UML sequence diagrams.

4. An Evaluation of Objects-First

In an attempt to study the quality of education in our objects-first CS1/CS2 courses,
we analyzed student performance in a systems class. Specifically, we compared the
grades of students having taken the objects-first courses to those of graduate students.

Since we usually require undergraduate transfer students to take our CS1/CS2
courses, graduate students are the only group of students that is largely unaffected by
the objects-first approach. The systems course is typically taken right after CS2, uses C
and assembly as programming languages, and employs no OO concepts at all.

Over the course of five years, we evaluated the grades of 180 undergraduate and 32
graduate students. We found that the average course grade for undergraduates was 2.97
(“B”; σ ≈ 1.138), the average for graduates was 3.29 (“B+”; σ ≈ 0.824). This means that
graduate students outperformed undergraduates by about 12 percent, or a third of a
letter grade. Considering that many of the undergraduates were only in their third
semester, though, this difference is small. We therefore believe that our objects-first
CS1/CS2 courses equip students well even for assignments in more traditional settings.
Unfortunately, due to the small size of our institution, it is difficult to obtain data that
significantly supports or rejects this hypothesis. Our inquiry also ignores other factors,
such as the background of graduate students and prior programming experience.

Reservations against objects-first courses often stem from the view of object
orientation as an “advanced” concept too complicated to teach to beginning students.
The experience at our institution over the past years and data collected by Phil Ventura
at SUNY Buffalo [13], however, suggest the opposite. The main predictor for success in
an objects-first curriculum seems to be the effort students put into the class. In
Ventura’s study, labs attended and exams taken accounted for 86.3 percent of the
variance in course scores. Other factors, such as year in college, declared major, GPA,
or mathematics background showed only little predictive power. The study also showed
that, in contrast to typical imperative-first courses, the evaluated objects-first course is
not gender-biased and does not disadvantage students without prior programming
experience. The evidence therefore suggests that objects-first is an introduction to
computer science for everyone.

Imperative-first courses largely ignore software design, leaving students unequipped
when dealing with the larger projects their careers hold in store. Objects-first courses,
on the other hand, spend much more time on the design aspects and introduce a
language’s syntax only when it is necessary. Concepts like classes, inheritance,
composition, UML, and some design patterns are usually introduced in the first half of
CS1 already. While procedural elements of programming are still introduced towards
the end of the first semester, students find this paradigm shift much easier to master
than the one found in imperative-first courses [14].

The size and nature of the assignments used in objects-first introductory courses
enable students to effectively participate in upper-level courses as well as in the
development of complicated large-scale software. In production programming courses,
for instance, students have employed OO design and unit testing to develop, maintain,
and enhance an integrated development environment (IDE) of considerable complexity
(>250,000 lines of code). This enterprise has reportedly been successful over the course
of several years in spite of an ever-changing group of student developers who often join
directly after having completed the CS2 course [15].

Suitable examples for an objects-first curriculum also lend themselves well for
introducing advanced concepts in computer science, such as systems security, graphics,
and distributed computing. To demonstrate the steps necessary to achieve robustness,
for example, an operating system analogy can be used: Only the kernel can perform
certain tasks, and any communication between user processes has to be done using the
kernel. Operating systems also provide interfaces that allow user processes to treat
devices abstractly; the concrete implementations are hidden in device drivers.

Delineation of responsibilities and abstract device access make an operating system
both robust and extensible. In computer graphics, a raytracer can be developed using
OO principles: Different geometric primitives form an inheritance hierarchy. In
distributed programming, a fork-join framework [16] makes many examples accessible,
particularly in combination with a sorting framework [17] using Merrit’s taxonomy of
sorting algorithms [18].

While these concepts cannot and should not be the focus of an introductory course,
they serve to captivate the students’ fascination and motivate them to pursue their
computer science careers with even greater interest.

5. Conclusion

Both anecdotal and statistical evidence suggests that an objects-first curriculum
provides a superb alternative to the prevalent imperative-first approaches, particularly
as an introduction to software engineering. For such a curriculum to be successful,
though, compelling examples and assignments of adequate complexity are required. The
three assignments presented in this paper stress OO design and the resulting robustness,
flexibility, and extensibility that would be hard to achieve without the use of object
orientation.

The result of using an objects-first approach is an introductory curriculum that
addresses several of the problems mentioned in the ACM/IEEE-CS reports and that
provides students with the software engineering skills necessary to write better
software.

6. References
[1] ACM/IEEE. Final Report of the Joint ACM/IEEE-CS Task Force on Computing Curricula 2001 for

Computer Science. ACM/IEEE, 2001.

[2] ACM/IEEE. Software Engineering 2004: ACM/IEEE-CS Guidelines for Undergraduate Programs in
Software Engineering. ACM ICSE 2005.

[3] Sun Microsystems, Inc. http://java.sun.com/j2se/javadoc/
[4] JUnit Project. http://www.junit.org/
[5] Clover. Atlassian Pty Ltd. http://www.atlassian.com/software/clover/
[6] Jeffries, R. http://www.xprogramming.com/
[7] Gamma, E., et al.. Design Patterns, Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.
[8] Nguyen, D., and M. Ricken. Nifty Assignments: Programming for Change. ACM OOPSLA Educators’

Symposium 2006.
[9] Adams, J. OOP and the Janus Principle. ACM SIGCSE 2006.
[10] Nguyen, D., and S. Wong. Design Patterns for Games, ACM SIGCSE 2002.
[11] Cheng, E., D. Nguyen, M. Ricken, and S. Wong. Nifty Assignments: Marine Biology Simulation. ACM

OOPSLA Educators’ Symposium 2004.
[12] Brady, A. AP marine biology simulation case study. J. Comput. Small Coll. 18, 1 (Oct. 2002), 113-114.
[13] Ventura, P. On the Origin of Programmers: Identifying Predictors of Success for an Objects-First CS1,

Dissertation, SUNY Buffalo, 2003.
[14] Alphonce, C. and P. Ventura. Object Orientation in CS1-CS2 by Design, ACM ITiCSE 2002.
[15] Allen, E., R. Cartwright, and C. Reis. Production Programming in the Classroom. ACM SIGCSE 2003
[16] Lea, D. A Java fork/join framework. In Proceedings of the ACM 2000 Conference on Java Grande.
[17] Nguyen, D. and S. Wong. Design Patterns for Sorting. ACM SIGCSE 2001.
[18] Merritt, S. A Logical Inverted Taxonomy of Sorting Algorithms. Communications of the ACM, Vol. 28, 1 (Jan

1985), 96-99.

http://java.sun.com/j2se/javadoc/
http://www.junit.org/
http://www.atlassian.com/software/clover/
http://www.xprogramming.com/

