A Distributed Waypoint Service Approach to Connect Heterogeneous Internet Address Spaces

T.S. Eugene Ng, Ion Stoica, Hui Zhang Carnegie Mellon University {eugeneng,istoica,hzhang}@cs.cmu.edu

Evolution of Internet Addressing

- Size of IPv4 address space is a fundamental limitation
 - Only 32-bit and poor utilization
- Solutions
 - Upgrade and deploy networks using IPv6
 - Deploy networks using reusable-IPv4 (or private-IPv4) addresses
- IPv4, IPv6, reusable-IPv4 address spaces will coexist in the Internet for the foreseeable future
- Important goal: Maintain universal connectivity in this environment with heterogeneous address spaces

Wait, Isn't IPv6 Going to Prevent This?

- "Dual-stacking" makes IPv6 hosts simultaneously act as IPv4 hosts
 - No visible heterogeneity
 - Every IPv6 host must consume an IPv4 address
- May not be feasible
 - IPv4 addresses are difficult and expensive to obtain
 - IPv4 address space may be exhausted before transition to IPv6 is complete
 - Additional implementation complexity

Maintaining Universal Connectivity

		Responder			
		IPv4	IPv6	Reusable-IPv4	
Initiator	IPv4	Trivial	(a) Hard	(b) Hard	
	IPv6	NAT-PT	Trivial	Reduces to (b)	
	Reusable-IPv4	NAT	Reduces to (a)	Reduces to (b)	

- An initiator of any address space type must be able to initiate a connection to a responder of any address space type
- Case (a) and (b) are hard because the responder fundamentally cannot be addressed by the IPv4 initiator
 - Consider case (b) only for simplicity; results apply directly to case (a)

Network Address Translator Is Insufficient

- Works well when reusable-IPv4 hosts initiate connections to IPv4 hosts (out-bound)
 - Bind reusable-IPv4 hosts to arbitrary client port numbers
- But only one reusable-IPv4 host is reachable by IPv4 hosts (in-bound)
 - IP_R can be bound to only one reusable-IPv4 host

Potential Solutions for IPv4 to Reusable-IPv4 Connectivity

- Static port binding
 - Bind service ports on NAT gateway to reusable-IPv4 hosts
 - Poor connectivity
- Encapsulation
 - IPv4 initiator generates encapsulated packets
 - Needs sophisticated extensions to DNS and all IPv4 hosts
- Naming layer (e.g. HIP [Moskowitz '00])
 - The real destination can be encoded in a new naming layer
 - Needs sophisticated extensions to DNS and all IPv4 hosts
- Application layer naming (e.g. HTTP)
 - The real destination can be encoded in higher level protocols
 - All applications need to be rewritten

The Case for Waypoints

 All existing solutions either provide poor connectivity or are difficult to deploy

 Fundamental question: How should the Internet be evolved to adapt to new requirements?

– Change all routers simultaneously?

– Change all end systems simultaneously?

 Waypoints provide a perfect platform to adapt the Internet

- Shared 3rd-party network agents
- Independent non-intrusive deployment
- Functionality immediately benefits global Internet

End system

Router

Waypoint

AVES: A Distributed Waypoint Service

- Virtual expansion of IPv4 address space
 - Small number of IPv4 waypoints virtually represent large number of reusable-IPv4 hosts (e.g. W_2 represents B and C)
 - Heterogeneity is hidden from IPv4 hosts
- Transparent AVES access via DNS name resolution

AVES Data Path Operations

Step	Packet sent
1	$[IP_A \rightarrow IP_W]$
2	$[IP_W \rightarrow IP_R [IP_A \rightarrow IP'_B]]$
3	$[IP_A \rightarrow IP_B]$
4	$[IP'_B \rightarrow IP_A]$
5	$[IP_W \rightarrow IP_A]$

AVES Control Path Operations

Step	<u>Action</u>
1	DNS query for B
2	DNS query for B
3	DNS reply for B (IP' _B)
4	SETUP message (IP_A, IP_R, IP'_B)
5	ACCEPT message
6	DNS reply for $B(IP_W)$

Note that A is configured to send aves.net queries directly to an AVES DNS server

AVES Connectivity Properties

- Using N IPv4 addresses, every IPv4 host can simultaneously reach up to N reusable-IPv4 hosts
- Every reusable-IPv4 host can be reached by an unlimited number of IPv4 hosts

Summary

		NAT	NAT + Static port binding	NAT + Encap- sulation	NAT + Naming layer	NAT + App layer naming	NAT + AVES
Out-bound connectivity	For each initiating reusable-IPv4 network	65000 TCP connections to each responding (IP, port)					-
	For each responding IPv4 host	No additional restriction					-
In-bound connectivity	For each responding reusable-IPv4 network	One host reachable at a time	One host per port reachable at a time	All hosts reachable	All hosts reachable	All hosts reachable	All hosts reachable
	For each initiating IPv4 host	No additional restriction					Up to N reusable-IPv4 hosts
Deployability (changes required)		Base case	NATs	NATs + DNS + All end system software	NATs + DNS + All end system software	NATs + All apps	NATs + DNS config

Future Work

- Intelligent waypoint selection
 - Minimize latency
 - Maximize throughput
- Automatic waypoint discovery
 - Eliminate needs for manual configuration
 - Increase robustness
- Application of AVES to virtual private networking
 - When site-to-site tunneling cannot be deployed
 - When address assignment conflicts exist among sites