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Abstract

We present a randomized approach to path planning
for articulated robots that have closed kinematic chains.
The approach extends the probabilistic roadmap tech-
nique which has previously been applied to rigid and elas-
tic objects, and articulated robots without closed chains.
Our work provides a framework for path planning prob-
lems that must satisfy closure constraints in addition to
standard collision constraints. This expands the power
of the probabilistic roadmap technique to include a vari-
ety of problems such as manipulation planning using two
open-chain manipulators that cooperatively grasp an ob-
ject, forming a system with a closed chain, and planning
for reconfigurable robots where the robot links may be re-
arranged in a loop to ease manipulation or locomotion.
We generate the vertices in our probabilistic roadmap
by sampling random configurations that ignore kinematic
closure, and by performing randomized gradient descent
to force satisfaction of the closure constraints. We gen-
erate edges in the roadmap by executing a randomized
traversal of the constraint surface between two vertices.
In this paper, we focus our presentation on the problem
of planning the motions for a collection of attached links
i a two-dimensional environment with obstacles. The
approach has been implemented and successfully demon-
strated on several examples.

1 Introduction

The Problem We address the problem of path plan-
ning for an articulated robot or structure that has many
degrees of freedom, closed kinematic chains and moves
in a cluttered environment (see Figure 1). This structure
could correspond to a single robot, or, for example, to a
pair of open-chain manipulators that cooperatively grasp
and manipulate an object [19]. It could also correspond
to a closed loop that may result from the rearrangement
of the links of a reconfigurable robot in order to ease
manipulation or locomotion [10, 20, 24].

We are working towards having an efficient planner
for systems with closed kinematic chains. Our plan-
ner is based on the probabilistic roadmap approach to
planning [16]. We construct a graph on the portion of
the configuration space that satisfies kinematic closure
constraints. The vertices of the graph are obtained by
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Figure 1: We consider structures that have closed kine-
matic chains and must avoid static obstacles.

sampling random configurations that ignore kinematic
closure and performing randomized gradient descent to
force satisfaction of the closure constraints. The edges of
the roadmap are computed by executing a randomized
traversal of the constraint surface between two vertices.

Applications The immediate applications of our work
are in systems with closed loops in which the connectivity
of the loops does not change but the configurations of the
loops change. One primary area of applications is ma-
nipulation planning. When two or more robots manipu-
late a single object, a closed kinematic chain is created
involving the robots and the object. During manipula-
tion, regrasping operations may be required to complete
a task. A regrasping operation breaks the closed chain,
while the object rests at a stable configuration, and forms
a new closed chain with the robots grasping the object
at different grasp positions. Between regrasping oper-
ations, there is a need to plan for the closed kinematic
chain as a whole. Our approach provides an efficient way
to compute the motion of the closed chain. Our approach
may shed new light to manipulation planning and seed
new research in that area. For example, manipulation
planning algorithms consider all possible combinations
of grasp positions [1], which can be very large, or first
plan for the object and then use inverse kinematics to
plan for the robots. In the latter case, regrasping is



done in configurations where the arms can not move any
further and frequently these configurations correspond
to awkward configurations of the whole system.

Manipulation problems arise in industrial settings,
virtual prototyping simulations, and in computer graph-
ics animation. In graphics animation, closed kinematic
chains are formed when a human-like character holds an
object with two arms and carries the object, when two
characters fight with each other, etc. A planner with
the capability to handle closure constraints in addition
to standard collision avoidance will be most useful in
automating parts of the animation task. Furthermore,
our work may have applications in planning for recon-
figurable robots [20, 24]. These robots support multi-
ple modalities of locomotion and manipulation. Closed
chains are often present in locomotion gaits [24], or arise
during the reconfiguration task. There is also is a grow-
ing interest in computational chemistry to develop tools
that efficiently search the configuration space of flexi-
ble molecules [11]. The atoms and bonds can be mod-
eled as joints and links, and the cyclic chains that com-
monly arise in molecules, impose closure constraints on
the kinematics that describe atom positions for given
configurations.

Use of Randomized Techniques There already ex-
ist complete algorithms that solve the general planning
problem; therefore, our efforts to develop a randomized,
incomplete planner need to be justified. The subset of
the configuration space that satisfies kinematic closure
constraints can generally be formulated as an algebraic
variety (the zeros of the system of implicit polynomial
equations). Many techniques exist that exactly and com-
pletely determine the structure of a variety [3, 12, 7]. Al-
though there have been many interesting recent advances
in computational algebraic geometry [22, 6], the com-
plexity of these algorithms still limits their use to sim-
pler problems. This observation has also been the basis
for the development of randomized path planning tech-
niques for rigid robots or articulated robots with open
kinematic chains.

It is next important to ask whether existing random-
ized path planning techniques can be applied to our
problem with minor adaptation. The major difficulty
is that existing methods are designed for planning in a
configuration space, which is assumed to be a param-
eterized manifold [21]. When closed kinematic chains
exist, such luxuries disappear because path planning
must be performed on a variety. In this case it is less
straightforward to generate allowable configurations or
local motions, which are needed for successful methods
such as the potential field method [5, 8, 18] or probabilis-
tic roadmaps [2, 17]. Our approach is to extend the prob-
abilistic roadmap paradigm to generate a roadmap on a
variety instead of a configuration space. This paradigm
was chosen because of its recent success, its simplicity,
and its ability to accommodate the case of open and
closed chain mechanisms under a unified framework as
explained in the next paragraph.

A General Framework Our longer-term goal is to
develop a general, probabilistic roadmap framework for
structures that include a complicated mixture of open
and closed chains. The principles introduced in this pa-
per serve as the closed-chain component, which can be
combined with existing tools for handling open chains.
In many applications the connectivity of the struc-
ture can vary frequently (e.g., a reconfigurable robot
[10, 20, 24] or two robots and an object during a ma-
nipulation task [19]). When closed-chains are formed,
our approach will produce vertices and edges that sat-
isfy the constraints on the subset of configuration vari-
ables that are involved in the closed chains. For a given
closed chain, our approach can also be used to precom-
pute vertices and edges that satisfy the kinematic closure
constraints, and could then be used in any system that
contains the closed chain. Additional chains might be at-
tached to this closed chain, or various obstacles might be
added to the world, but the primary burden of explor-
ing the subset of the configuration space that satisfies
the kinematic closure constraints will already have been
handled.

2 Problem Formulation

Our problem will be defined in a bounded 2D or 3D
world, W C RV, such that N = 2 or N = 3. Let a link,
L;, be a rigid body in the world, which is considered as
a closed, bounded point set. Let £ be a finite collection
of ny links, {L1,Ls,...,Lyn,}. Let J(L;,L;) (or simply
J) define a joint, which indicates that the pair of links
L; and L; are attached. Additional information is asso-
ciated with a joint: the point of attachment for L;, the
point of attachment for L;, the type of joint (revolute,
spherical, etc.), and the range of allowable motions. Let
J be a collection of n; joints that connect various links
in £. Let M = (£,J) define a structure. An example
is shown in Figure 1. It will sometimes be convenient to
consider M as a graph in which the joints correspond
to vertices and the links correspond to edges. Therefore,
let G denote the underlying graph of M.

Now consider the kinematics of M. Using a stan-
dard parameterization technique, such as the Denavit-
Hartenburg representation [13, 15], the configuration of
M can be expressed as a vector, ¢, of real-valued param-
eters. Let C denote the configuration space or C-space.
Let M(q) denote the transformation of M to the con-
figuration given by ¢. Note that the graph G is a tree
if and only if there are no closed kinematic chains. If
G is a tree, then any configuration ¢ yields an accept-
able position and orientation for each of the links if we
ignore collision issues and planning for such systems as
has been considered in [5, 9, 14, 17].

In this paper, we are primarily concerned with the
case in which M contains closed kinematic chains, which
implies that G s contains cycles. In this case, there will
generally exist configurations that do not satisfy closure
constraints of the form f(q) = 0. Constraints can be
defined by breaking each cycle in G at a vertex, v, and
writing the kinematic equation that forces the pose of the
corresponding joint to be the same, regardless of which



of the two paths were chosen to v. Let F represent the
set, {fl(q) = 07f2(Q) = 07' 7fm(q) = 0} of m closure
constraints. In general, if n is the dimension of C, then
m < n. Let Ceons C C denote the set of all configurations
that satisfy the constraints in F.

A collision is defined for M(q) if any of the links of
M(q) collides with any of the workspace obstacles or
the other links 7. Consecutive links usually do not give
rise to collisions. Using standard terminology, let Cyyee
denote the set of all configurations such that M/(q) is
not in collision. In addition to the usual complications
of path planning for articulated bodies having many de-
grees of freedom, we are faced with the challenge of keep-
ing the configuration in Ceons. Although C is typically
a manifold, C..,ns will be more complicated. It can be
expressed as an algebraic variety (the zero set of a sys-
tem of polynomial equations), and it is assumed that a
parameterization of C.,p, is not available.

The task can now be defined as follows. Let Cyqt =
Ccons NCgree, which defines the set of configurations that
satisfy both kinematic and collision constraints. Let
Ginit € Csat and ggoqr € Csqt be the initial configuration
and goal configuration, respectively. The task is to find
a continuous path 7 : [0,1] = Csqt such that 7(0) = ginat
and 7(1) = ggoqi- We also intend to build a network of
paths that share common endpoints, forming a roadmap
in Csat-

3 The General Approach

Our approach to path planning in C,¢ follows the
same philosophy presented in [17] for constructing a
roadmap in Cgree. In that approach, a set of roadmap
vertices is generated by selecting several thousand config-
urations at random, and keeping the ones that are not in
collision. A distance metric is defined on the configura-
tion space, and a neighborhood of vertices is determined
for each vertex in the roadmap. A local planner (e.g.,
connect points C by a line segment) is used to attempt
to connect each vertex to other vertices in its neighbor-
hood. Collision detection is performed along the path
determined by the local planner to determine whether
the path should be added as an edge in the roadmap.

Each of these steps is considerably more challenging
for the case of constructing a probabilistic roadmap in
Csqt- To determine the vertices, we can no longer simply
guess random configurations because they will normally
not lie in C4qs. Since Cgqy is generally of lower dimension
than C, the probability is zero that a randomly-chosen
point will lie in Cse¢. In Section 3.1 we present a ran-
domized descent algorithm that takes a randomly-chosen
point in C and attempts to move it incrementally to Csqy.-
Repeated use of this algorithm results in a set of vertices
for our roadmap. To construct the edges, the local plan-
ner becomes more complicated because the path gener-
ated must satisfy the kinematic constraints. In Section
3.2 we present a randomized scheme that attempts to
connect two nearby vertices while ensuring that the con-
straint is maintained to within a specified tolerance.

L
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Figure 2: (a) Configurations are first chosen at random
in C; the curves depict Ceons. (b) Randomized error min-
imization is performed on the samples to force as many
as possible onto Ceons-

Figure 3: Each kinematic loop is broken, and e(q) is
measured in terms of Euclidean distances.

3.1 Generating the Roadmap Vertices

Figure 2 illustrates the problem of generating vertices
in C4qt- A random sample in C can be easily generated (of
course its distribution depends on the parameterization
of C). The algorithm in Figure 4 gives pseudocode for a
randomized descent technique that iteratively attempts
to reduce an error function, e(q), which can be defined
in terms of each f;(¢q). If the constraints are expressed
in polynomial form, the algebraic distance can be min-
imized, or an approximation to the Euclidean distance
in C may easily be minimized [23]. We chose an alterna-
tive approach, though, which is to break the kinematic
loops and minimize the sum of squares the Euclidean
distances of each joint that is not where it should be to
satisfy kinematic closure. See Figure 3.

The algorithm GENERATE RANDOM_VERTEX re-
quires three constants: €, which is the numerical toler-
ance on the error function, I, which is the maximum
number of search steps, and J which is the maximum
number of consecutive failures to close the kinematic
chains. Assume that RANDOM_NHBR always gener-
ates a random configuration in Cyf.c., and the distance
between ¢q and ¢' is fixed and small. RANDOM_NHBR
may have to guess many nearby configurations to pro-
duce one that is collision-free. Rather than compute a
complicated gradient of e(q), any random configuration
that is better than g is kept. This was observed in [4]
to be much faster than computing an analytical gradient
for high-degree-of-freedom problems. If the algorithm
becomes trapped in a local minimum and returns FAIL-



GENERATE RANDOM_VERTEX()
1 ¢ +RANDOM_CONFIGURATION();

2 i 0; jeoO

3 whilei <Tand j<Jande(gq) >edo
4 T+ g+ -+

5 ¢ +~RANDOM_NHBR(q);

6 if e(¢') < e(q) then

7 Je0; g+

8 ife(q) < e then Return ¢

9 else Return FAILURE

Figure 4: This algorithm iteratively attempts to reduce
the kinematic error.

URE, then the sample is simply discarded. This has no
serious effect on the overall approach, except that some
computation time is wasted. Other approaches, such as
the Levenberg-Marquardt nonlinear optimization proce-
dure could be used instead of randomized descent, but
one must be careful not to introduce an unwanted deter-
ministic bias on the solutions.

3.2 Generating the Roadmap Edges

Once a set of vertices have been generated for the
roadmap, a local planner is used to determine edges. Let
p(q,q") denote a metric on the configuration space. This
could be defined, for example, as the sum of squares of
the Euclidean displacements of all of the joints. Pairs of
vertices for which p is below some threshold are chosen
for attempted connection (this step is also performed in
standard probabilistic roadmap construction). The al-
gorithm in Figure 5 attempts to reduce p, the distance
from ¢ to ¢', by a randomized gradient descent that si-
multaneously maintains the kinematic error to within €
and reduces p. The randomized descent is free to travel
due to tolerances on the closure constraints. The struc-
ture of CONNECT _VERTICES is similar to GENER-
ATE_RANDOM_VERTEX. An additional constant K is
used to terminate after K consecutive failures to reduce
p, even though kinematic closure is maintained. Also,
the constant pg is introduced to stop the algorithm when
the path from q is sufficiently close to ¢'. In some cases,
it might be preferable to switch the order of lines 5 adn 7.
The success of the algorithm is based on the assumption
that the selected vertices are close enough to ensure that
local minima and collision constraints are not likely to
prevent connection. Path smoothing can be performed
on the resulting output L to improve the solution quality.

A crucial element in the performance of CON-
NECT_VERTICES is how RANDOM_NHBR will be se-
lected. Although our current implementation chooses
samples at random, it is preferable to generate samples
that locally follow the tangent space of the constraints.
The differential configuration vector dq lies in the tan-
gent space of f;(¢) =0 if

dfi(q) 0fi(q) ofila) , _
6—q1dCI1 + a—qzdih +---+ 0—qndqn =0. (1)

CONNECT_VERTICES(q, ¢")
1 i+0; j«<0; k+«<0;L={q};
2 whilei< I and j < J and k£ < K and
p(LAST(L),q") > po do
it++; j++;
q" «<RANDOM_NHBR(LAST(L));
if e(¢") < e then
i< 0; k++;
if p(¢",q') < p(LAST(L),q') then
k<0; L<L+{d"}; ¢=4¢%
if p(LAST(L),q") < po then Return L
0 else Return FAILURE
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Figure 5: This algorithm iteratively attempts to bring
the system from one vertex to another while keeping the
kinematic error within tolerances on Ceops-

This leads to the following homogeneous system:

0file) 9hA(  9h(9)

oq 0g; Oqy, dg:

0fr() 9fle)  9fa(q) dgs

Oq 0q2 0qn . =0 (2)
Ofm(@) Ofml))  Ofmle) | “¥m

Oq g2 qn

Recall that m < n. If the rank of the matrix is k¥ < m,
then n — k configuration displacements can be chosen
independently, and the remaining k& parameters must
satisfy (2). This under-constrained homogeneous sys-
tem can be efficiently converted into reduced row eche-
lon form using singular value decomposition (SVD). This
enables RANDOM_NHBR to locally follow the tangent
space and only generate n — k random scalar displace-
ments. The remaining displacements are given by sim-
ple linear equations. On average this technique should
allow RANDOM_NHBR to remain within tolerances for
larger step sizes, thus improving the efficiency of CON-
NECT_VERTICES.

3.3 Path Planning in C.yp;

A path planning query is given by ginit and ggoqr. We
can simply pretend that these two are new vertices in
the roadmap, and use the technique from Section 3.2 to
connect each of them to nearby vertices already in the
roadmap. Graph search techniques can then be used to
search the roadmap for a path that connects the two
vertices. A path will not be found if the vertices lie in
separate connected components. This could either mean
that there is no solution, or that more vertices might be
needed in the graph. The expansion technique discussed
in [17] could be employed in this case to help increase
the connectivity of the roadmap.



4 A Case Study: A 2D Line-Segment
Structure

Although the approach described in this paper can
be applied to a very general class of problems, we have
made several simplifications in order to implement and
illustrate the basics of our approach: 1) £ is a collection
of line segments in a 2D world; 2) joints only attach links
at their endpoints; 3) every joint is revolute; 4) there
are no joint limits (i.e., they have full freedom to rotate
from 0 to 27); 5) one of the joints attaches a link to
the origin (0,0) in the world, W; 6) the obstacle region
is polygonal. Since each joint must attach two links,
it will be convenient to consider a zero-length artificial
link, Lg, that is permanently fixed at the origin. Below
we describe the model components for a 2D line-segment
structure and the implementation of our algorithm.

Kinematics Each configuration parameter, ¢; can
vary from 0 to 2m; thus, the configuration space C is
[S1]™. The structure is in self collision if the interior of
any line segments intersect. The free configuration space
Csree contains the set of all configurations that avoid self
collision and collision with static obstacles.

To determine the position and orientation of each L;
with respect to L; 1 in a chain of links Ly, Ls,-- -, L;,
we will use a “homogeneous” transform matrix T; that
encodes both translation and rotation in W:

cosq; —sing; £; 1 T
T;=| sing; cosqg; 0 Y|, 3)
0 0 1 1

in which ¢; is the length of L; and £y = 0 (the length of
the artificial link Lg). The transformation of any link is
given by the product, V(z,y) € L;,

z(q) z
yl@) | =TTx---Ti |y (4)
1 1

Closure Constraints To handle the closure con-
straints, we define a new structure, M' = (L', J'), which
is obtained by breaking cycles in the underlying graph
Gy of M. Let the set of links be the same, £ = L.
Let J' be a superset of 7 and contain n;j +m joints. A
new joint is added for each of the m cycles in G ps. For
each cycle in Gy, a corresponding joint can be selected
arbitrarily. Denote this link by Jj. There will be two
links from the cycle that are attached to Ji. For one of
the links, disconnect it from Jj and form a new joint J;.
If this insertion of joints is performed for each cycle, the
result will be a structure M’ which has no cycles (G
is a tree). In M’, the configuration of any link can be
determined by applying (4) to the sequence of links on
the unique path to Lg.

Neglecting self-collision, note that M’ can achieve any
configuration in C. If Jy and Jj, have the same position
in W, then a closure constraint from M is satisfied. If
this is true for all joints in J'\ J, then the configuration

I
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e

Figure 6: Four samples that lie in distinct connected
components of Cgq; for a 10-dof structure.

lies in Ceons. The closure constraint f; can be written
by subtracting the expression for J(g) using (4) from
the expression for J; using (4). Let B be the indices of
the set of joints that are broken in M to form M'. The
kinematic error function from Section 3.1 can be defined

as
e(a) = Y I19k(a) = J(@I*- ()

keB

Distance Metric The following distance metric can
be used to both determine whether to try connecting
vertices, and to drive the actual search to connect them:

p(a,q) = llai — gl (6)
i=1

Experimental Results The planner was imple-
mented in C++ and LEDA (Library of Efficient
Datatypes and Algorithms) on a PC-based Linux work-
station. The initial results appear promising; however,
significant performance improvements can be made. The
current results took several hours to generate, and we
hope in the future to improve the edge connection speed
by iteratively refining the allowed tolerances on the kine-
matic closure error. In the current implementation, the
allowable error during connection is 0.04 for links of
length 10. Figure 6 shows four samples that were ob-
tained from by GENERATE_RANDOM_VERTEX. Note
that each sample represents a distinct connected compo-
nent of Cs¢. A roadmap was generated that contains
about 3000 vertices and about 12000 edges. Figure 7
shows several computed solutions for a variety of exam-
ples.

5 Conclusions

We presented an extension of the probabilistic
roadmap path planning approach to the case of systems
that have closed kinematic chains. Closure constraints
are common in many applications such as robotics, com-
putational chemistry, virtual prototyping, and computer
graphics. The difficulty is that path planning must be
performed in a complicated subset, Csq, of the configu-
ration space.

Our current experiments represent a preliminary eval-
uation of the approach. We are currently investigating
potential performance improvements that can be made
to the algorithms in Figures 4 and 5, and the application
of these algorithms to more complicated structures in 2D
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Figure 7: Snapshots along computed paths for three ex-
amples. The first is an 8-link loop that includes a manip-
ulated bar; the second is a 6-link loop with an attached
“end effector”; the third consists of two four-link loops.
The disk in each frame indicates where the structure is
attached to the world.

or 3D environments. The improvement of the vertex gen-
eration and edge connection procedures is a largely open
issue.
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