Unified Analysis of Array and Object References
in Strongly Typed Languages

Stephen Fink!, Kathleen Knobe?, and Vivek Sarkar!

1 IBM Thomas J. Watson Research Center
P. O. Box 704, Yorktown Heights, NY 10598, USA
2 Compaq Cambridge Research Laboratory
One Cambridge Center, Cambridge, MA 02139, USA

Abstract. We present a simple, unified approach for the analysis and
optimization of object field and array element accesses in strongly typed
languages, that works in the presence of object references/pointers. This
approach builds on Array SSA form [14], a uniform representation for
capturing control and data flow properties at the level of array elements.
The techniques presented here extend previous analyses at the array
element level [15] to handle both array element and object field accesses
uniformly.

In the first part of this paper, we show how SSA-based program analyses
developed for scalars and arrays can be extended to operate on object
references in a strongly typed language like Java. The extension uses
Array SSA form as its foundation by modeling object references as indices
into hypothetical heap arrays. In the second part of this paper, we present
two new sparse analysis algorithms using the heap array representation;
one identifies redundant loads, and the other identifies dead stores. Using
strong typing to help disambiguation, these algorithms are more efficient
than equivalent analyses for weakly typed languages. Using the results
of these algorithms, we can perform scalar replacement transformations
to change operations on object fields and array elements into operations
on scalar variables.

We present preliminary experimental results using the Jalapeno opti-
mizing compiler infrastructure. These results illustrate the benefits ob-
tained by performing redundant load and dead store elimination on
Java programs. Our results show that the (dynamic) number of memory
operations arising from array-element and object-field accesses can be
reduced by up to 28%, resulting in execution time speedups of up to 1.1x.

Keywords: static single assignment (SSA) form, Array SSA form, load
elimination, store elimination, scalar replacement, Java object references.

1 Introduction

Classical compiler analyses and optimizations have focused primarily on prop-
erties of scalar variables. While these analyses have been used successfully in
practice for several years, it has long been recognized that more ambitious
analyses must also consider non-scalar variables such as objects and arrays.

J. Palsberg (Ed.): SAS 2000, LNCS 1824, pp. 155-174, 2000.
© Springer-Verlag Berlin Heidelberg 2000

156 Stephen Fink et al.

Past work on analysis and optimization of array and object references can
be classified into three categories — 1) analysis of array references in scientific
programs written in languages with named arrays such as Fortran, 2) analysis
of pointer references in weakly typed languages such as C, and 3) analysis of
object references in strongly typed languages such as Modula-3 and Java. This
research focuses on the third category.

Analysis and optimization algorithms in the first category were driven by
characteristics of the programming language (Fortran) used to write scientific
programs. These algorithms typically use dependence analysis [22] to disam-
biguate array references, and limit their attention to loops with restricted control
flow. The algorithms in this category did not consider the possibility of pointer-
induced aliasing of arrays, and hence do not apply to programming languages
(such as C and Java) where arrays might themselves be aliased.

Analysis and optimization algorithms in the second category face the
daunting challenge of dealing with pointer-induced aliases in a weakly typed
language. A large body of work has considered pointer analysis techniques
(e.g., [17,6,13,16,7,12]) that include powerful methods to track pointer references
both intra- and inter-procedurally. However, many of these techniques have
limited effectiveness for large “real-world” programs because the underlying
language semantics force highly conservative default assumptions. In addition,
these algorithms are known to be complex and time-consuming in practice.

The research problem addressed by our work falls in the third category
viz., efficient and effective analysis and optimization of array and object
references in strongly typed object-oriented languages such as Java. Recent
work on type-based alias analysis [11] has demonstrated the value of using type
information in such languages in analysis and optimization.

In this paper, we present a new unified approach for analysis and optimization
of object field and array element accesses in strongly typed languages, that works
in the presence of object references/pointers. We introduce a new abstraction
called heap arrays, which serves as a uniform representation for array and object
references. Our approach is flow-sensitive, and therefore more general than past
techniques for type-based alias analysis. In addition, our approach leverages past
techniques for sparse analyses, namely Array SSA form (SSA) [14,15] and scalar
global value numbering [1], to obtain analysis and optimization algorithms that
are more efficient than the algorithms used for weakly type languages such as C.

To illustrate this approach, we present two new analysis algorithms for
strongly typed languages: one identifies redundant loads, and one identifies dead
stores. We have implemented our new algorithms in the Jalapeno optimizing
compiler [3], and we present empirical results from our implementation. Our
results show that the (dynamic) number of memory operations arising from
array-element and object-field accesses can be reduced by up to 28%, resulting

in execution time speedups of up to 1.1x.
Our interest in efficient analysis arises from our goal of optimizing large Java
programs. For this context, we need optimization algorithms that are efficient

enough to apply at runtime in a dynamic optimizing compiler [3]. However,

Unified Analysis of Array and Object References 157

we believe that the approach developed in this paper will also apply to other
applications that require efficient analysis, such as program understanding tools
that need to scale to large programs.

The rest of the paper is organized as follows. Section 2 outlines the
foundations of our approach: Section 2.1 introduces heap arrays, and Section 2.2
summarizes an extension of global value numbering to efficiently precompute
definitely-same and definitely-different information for heap array indices. Sec-
tion 3 describes our algorithms to identify redundant loads and dead stores.
Section 4 contains our preliminary experimental results. Section 5 discusses
related work, and Section 6 contains our conclusions.

2 Analysis Framework

In this Section, we describe a unified representation called extended Array SSA
form, which can be used to perform sparse dataflow analysis of values through
scalars, array elements, and object references. First, we introduce a formalism
called heap arrays which allows us to analyze object references with the same
representation used for named arrays [I4]. Then, we show how to use the
extended Array SSA representation and global value numbering to disambiguate
pointers with the same framework used to analyze array indices.

2.1 Heap Arrays

In this section, we describe our approach to analyzing accesses to object fields
and array elements as accesses to elements of hypothetical heap arrays. The
partitioning of memory locations into heap arrays is analogous to the partitioning
of memory locations using type-based alias analysis [11]. The main difference is
that our approach also performs a flow-sensitive analysis of element-level accesses
to the heap arrays.

We model accesses to object fields as follows. For each field z, we introduce
a hypothetical one-dimensional heap array, H*. Heap array H® consolidates all
instances of field x present in the heap. Heap arrays are indexed by object
references. Thus, a GETFIELD! of p.z is modeled as a read of element H*[p], and
a PUTFIELD of ¢.z is modeled as a write of element H”[g]. The use of distinct
heap arrays for distinct fields leverages the fact that accesses to distinct fields
must be directed to distinct memory locations in a strongly typed language. Note
that field = is considered to be the same field for objects of types C; and Cs,
if z is declared in class C7 and class Cy extends class Cy i.e., if Cy is a subclass
of Cl .

Recall that arrays in an OO language like Java are also allocated in the
heap — the program uses both an object reference and an integer subscript
to access an array element. Therefore, we model such arrays as two-dimensional

! We use GETFIELD and PUTFIELD to denote general field access operators that may
appear in three-address statements, not necessarily in Java bytecode.

158 Stephen Fink et al.

heap arrays, with one dimension indexed by the object reference, and the second
dimension indexed by the integer subscript. To avoid confusion, we refer to the
array declared in the program as a “program array”, and its representation in
our model as its corresponding heap array.

The notation HZ 1™ denotes a heap array, where R is the rank (dimension-
ality) of the underlying program array, and 7 is the element type. We introduce
a distinct heap array for each distinct array type in the source language. Java
contains seven possible array element types — bytes, chars, integers, longs, floats,
doubles and objects. We denote the heap arrays for one-dimensional program
arrays of these element types by HOU, well il U1 w1 1Al and ROl
respectively?. Thus, a read/write of a one-dimensional integer program array
element a[i] corresponds to a read/write of heap array element H'l![a,i]. In
general, heap arrays for R-dimensional arrays of these types are denoted by
'Hb[]R7 HZ’HR’ Hl[]R’ Hf[]R’ Hd[]R’ and HOIIR,

Note that we have only one heap array, HOI® | that represents all R-dimen-
sional arrays of objects. We could refine this approach by examining all the
object array types used in the method being compiled, and replacing HOUI® by
a set of heap arrays, one for each LCA (Least Common Ancestor) in the class
hierarchy of the object array types.

Having modeled object and array references as accesses to named arrays,
we can rename heap arrays and scalar variables to build an extended version
of Array SSA form [14]. First, we rename heap arrays so that each renamed
heap array has a unique static definition. This includes renaming of the dummy
definition inserted at the start block to capture the unknown initial value of the
heap array.

We insert three kinds of ¢ functions to obtain an eztended Array SSA form
that we use for data flow analyses®. Figure 1 illustrates the three types of ¢
function.

1. A control ¢ (denoted simply as ¢) corresponds to the standard ¢ function
from scalar SSA form [10], which represents a control flow merge of a set of
reaching definitions.

2. A definition ¢ (d¢) is used to deal with “non-killing” definitions. In scalar
SSA, form a definition of a scalar kills the value of that scalar previously
in effect. An assignment to an array element, however, must incorporate
previous values. d¢ functions were introduced in our past work on Array
SSA form [14,15].

3. A use ¢ (u¢) function creates a new name whenever a statement reads a
heap array element. u¢ functions were not used in prior work, and represent
the extension in “extended” Array SSA form.

The main purpose of the u¢ function is to link together load instructions
for the same heap array in control flow order. Intuitively, the u¢ function

2 By default, R = 1 in our notation i.e., we assume that the array is one-dimensional
if R is not specified.

3 The extended Array SSA form can also be viewed as a sparse data flow evaluation
graph [3] for a heap array.

Unified Analysis of Array and Object References 159

creates a new SSA variable name, with which a sparse dataflow analysis can
associate a lattice variable.

We present one dataflow algorithm that uses the u¢ for redundant load
identification and one algorithm (dead store elimination) that does not
require a new name at each use. In this latter case the u¢ function is omitted.

We will sometimes need to distinguish between references (definitions and
uses) that correspond directly to references in source and references added by
construction of our extended Array SSA form. We refer to the first as source
references and the second as augmenting references. In figure 1.c the references
to x1[j], w2[k] and x3[i] are source references. The other references in that code
fragment are all augmenting references.

Original program: Original program: Original program:
{z in {z in {z in
effect here. } effect here. } effect here. }
z[j] = ... if ... then z[j] = ...
z[j] = = xlk]
endif o= i
Insertion of d¢: Insertion of ¢: Insertion of ug:
{:Co in
{zo in effect here. } {zo in
effect here. } if ... then effect here. }
1‘1[]} = L. 1‘1[]] = .. 1‘1[]} = L.
ro = dp(x1,T0) T2 = do ... x2 = dp(z1,T0)
endif cooi= xolk]
r3 = ¢(x2, T0) z3 = up(x2)
= :03[1]
xq 1= ug(x3)
(a) (b) (©)

Fig. 1. Three examples of ¢ nodes in extended Array SSA form.

The d¢ and u¢ functions in extended Array SSA form do not lead to excessive
compile-time overhead because we introduce at most one d¢ function for each
heap array def and at most one u¢ function for each heap array use. Instructions
that operate on scalar variables do not introduce any heap array operations®.
So, the worst-case size of the extended Array SSA form is proportional to the

4 Note that local variables (stack elements) cannot be subject to pointer-induced
aliasing in a strongly typed language such as Java.

160 Stephen Fink et al.

size of the scalar SSA form that would be obtained if each heap array access is
modeled as a def. Past empirical results have shown the size of scalar SSA form
to be linearly proportional to the size of the input program [10], and the same
should hold for extended Array SSA form.

2.2 Definitely-Same and Definitely-Different Analyses for Heap
Array Indices

In this section, we show how the heap arrays of extended Array SSA form reduce
questions of pointer analysis to questions regarding array indices. In particular,
we show how global value numbering and allocation site information can be
used to efficiently compute definitely-same (DS) and definitely-different (DD)
information for heap array indices. For simplicity, the DS and DD analyses
described in this section are limited in scope to scalar references.

As an example, consider the following Java source code fragment annotated
with heap array accesses:

r=p;
q = new Typel ;

P-Y = .. /! HY[p] =
q-y = ... ; /! HY[q]=...
.=y /=Y

Our analysis goal is to identify the redundant load of r.y, enabling the compiler
to replace it with a use of scalar temporary that captures the value stored into
p.y. We need to establish two facts to perform this transformation: 1) object
references p and r are identical (definitely same) in all program executions, and
2) object references ¢ and r are distinct (definitely different) in all program
executions.

For a program in SSA form, we say that DS(a,b) = true if and only if
variables @ and b are known to have exactly the same value at all points that are
dominated by the definition of a and dominated by the definition of b. Analogous
to DS, DD denotes a “definitely-different” binary relation i.e., DD(a, b) = true
if and only if @ and b are known to have distinct (non-equal) values at all points
that are dominated by the definition of @ and dominated by the definition of b.

The problem of determining if two symbolic index values are the same is
equivalent to the classical problem of global value numbering [1,18,21]. We use
the notation V(i) to denote the value number of SSA variable i. Therefore, if
V(i) = V(j), then DS(i, j) = true. For the code fragment above, the statement,
p = r, ensures that p and r are given the same value number (i.c., V(p) = V(r)),
so that DS(p,r) = true.

In general, the problem of computing DD is more complex than value
numbering. Note that DD, unlike DS, is not an equivalence relation because
DD is not transitive. DD(a,b) = true and DD(b, ¢) = true, does not imply that
DD(a,c) = true.

Unified Analysis of Array and Object References 161

For object references, we use allocation-site information to compute the DD
relation. In particular, we rely on two observations:

1. Object references that contain the results of distinct allocation-sites must be
different.

2. An object reference containing the result of an allocation-site must differ
from any object reference that occurs at a program point that dominates
the allocation site. (As a special case, this implies that the result of an
allocation site must be distinct from all object references that are method
parameters.)

For example, in the above code fragement, the presence of the allocation site
in q = new Typel ensures that DD(p, q) = true.

For array references, we currently rely on classical dependence analysis to
compute the DD relationship within shared loops. Global DD is the subject of
future work.

Although the computations of DD for object references and array indices
differ, the algorithms presented here use both types of DD relation in the same
way, resulting in a unified analysis for arrays and objects. This unified approach
applies, for example, to analysis of Java arrays, which are themselves accessed
by reference. In this case we need to determine 1) if two arrays references are
definitely not aliased and 2) if the array indices referenced are definitely not the
same.

In the remainder of the paper, we assume that the index of a heap array is,
in general, a vector whose size matches the rank of the heap array e.g., an index
into a one-dimensional heap array H" will be a vector of size 1 (i.e., a scalar), and
an index into a two-dimensional heap array H®!! will be a vector of size 2. (For
Java programs, heap arrays will have rank < 2 since all program arrays are one-
dimensional.) Given a vector index k = (k1,...), we will use the notation V(k)
to represent a vector of value numbers, (V(k1),...). Thus, DS(7, k) is trueif and
only if vectors 7 and k have the same size, and their corresponding elements are
definitely-same i.e., DS(j;, ki) = true for all i. Analogously, DD(j, k) is true if
and only if vectors 5 and k have the same size, and at least one pair of elements
is definitely-different i.e., DD(jj, ki) = true for some i.

3 Scalar Replacement Algorithms

In this Section, we introduce two new analyses based on extended Array SSA
form. These two analyses form the backbone of scalar replacement transforma-
tions, which replace accesses to memory by uses of scalar temporaries. First,
we present an analysis to identify fully redundant loads. Then, we present an
analysis to identify dead stores.

Figure 2 illustrates three different cases of scalar replacement for object fields.
All three cases can be identified by the algorithms presented in this paper. For
the original program in figure 2(a), introducing a scalar temporary T1 for the
store (def) of p.x can enable the load (use) of p.x to be eliminated i.e., to

162 Stephen Fink et al.

Original program: Original program: Original program:
p := new Typel p := new Typel p := new Typel
q := new Typel q := new Typel q := new Typel
. . . . r =
p.-x := . = p.x . P
q.X = ... q.x = ... p.-x :=
... = p.x = p.x q.x =
r.x :=
After redundant load After redundant load After dead store
elimination: elimination: elimination:
p := new Typel p := new Typel p := new Typel
q := new Typel q := new Typel q := new Typel
Lo S r =
T1 := ... T2 := p.x .. P

p.x :=T1 = T2 q.xX :=

q.Xx = ... q.x = ... r.x :=

L. =T . = T2

(a) (b) (c)

Fig. 2. Object examples of scalar replacement

Original program: Original program: Original program:
x[p] = ... = x[p] x[p] =
x[p+1] := ... x[p+1] = ... x[p+1] :=

... = x[p] ... = x[p] x[p] =

(a) (b) ()

Fig. 3. Array examples of scalar replacement

be replaced by a use of T1. Figure 2(b) contains an example in which a scalar
temporary (T2) is introduced for the first load of p.x, thus enabling the second
load of p.x to be eliminated i.e., replaced by T2. Finally, figure 2(c) contains an
example in which the first store of p.x can be eliminated because it is known to
be dead (redundant); no scalar temporary needs to be introduced in this case.

Figure 3 shows array-based examples. To highlight the uniform approach for
both arrays and objects, these examples are totally analagous to the object based
examples in figure 2.

Past algorithms for scalar replacement (e.g., [4,2]) have been based on data
dependence analysis or on exhaustive (dense) data flow analysis (e.g., [5]).
In this section, we show how extended Array SSA form, augmented with the
definitely-same and definitely-different analysis information described in sec-
tion 2.2, can be used to obtain a simple sparse scalar replacement algorithm.
In addition, the use of SSA form enables our algorithm to find opportunities
for scalar replacement that are not discovered by past algorithms that focus
exclusively on innermost loops.

Unified Analysis of Array and Object References 163

The rest of this section is organized as follows. Section 3.1 describes our
analysis to identify redundant loads with respect to previous defs and previous
uses, and Section 3.2 outlines our algorithm for dead store elimination.

3.1 Redundant Load Elimination

Input: Intermediate code for method being optimized, augmented with the DS and DD
relations defined in Section 2.2.

Output: Transformed intermediate code after performing scalar replacement.

Algorithm:

1. Build extended Array SSA form for each heap array.

Build Array SSA form, inserting control ¢, d¢ and u¢ functions as outlined in

Section 2.1, and renaming of all heap array definitions and uses.

As part of this step, we annotate each call instruction with dummy defs and uses

of each heap array for which a def or a use can reach the call instruction. If

interprocedural analysis is possible, the call instruction’s heap array defs and uses
can be derived from a simple flow-insensitive summary of the called method.
2. Perform index propagation.

(a) Walk through the extended Array SSA intermediate representation, and for
each ¢, d¢, or u¢ statement, create a dataflow equation with the appropriate
operator as listed in Figures 5, 6 or 7.

(b) Solve the system of dataflow equations by iterating to a fixed point.

After index propagation, the lattice value of each heap array, A;, is L£(A;) =

{ V(k) | location A[k] is “available” at def A; (and all uses of A;) }.

3. Scalar replacement analysis.

(a) Compute UseRepSet = { use Aj[z] | 3 V(x) € L(A;) } i.e., use Ajlx] is
placed in UseRepSet if and only if location A[x] is available at the def of A;
and hence at the use of Aj;[z]. (Note that A; uniquely identifies a use, since
all uses are renamed in extended Array SSA form.)

(b) Compute DefRepSet = { def A;[k]|Tuse Al € UseRepSet with V@)=V (k) }
i.e., def A;[k] is placed in DefRepSet if and only if a use A;[x] was placed in
UseRepSet with V(x) = V(k).

4. Scalar replacement transformation.

Apply scalar replacement actions selected in step 3 above to the original program

and obtain the transformed program.

Fig. 4. Overview of Redundant Load Elimination algorithm.

Figure 4 outlines our algorithm for identifying uses (loads) of heap array
elements that are redundant with respect to prior defs and uses of the same
heap array. The algorithm’s main analysis is index propagation, which identifies
the set of indices that are available at a specific def/use A; of heap array A.

164 Stephen Fink et al.

[L(A2) [£(A0) = T[L£(A0) = ((41),-.-) [£(Ag) = 1]
LA)=T T T T
L(Ar) = ((#")) T |uepate((@), ((41).---))] (@)
L(A) =1 I I I

Fig. 5. Lattice computation for L£(As) = Lap(L(A1),L(Ag)) where Ay =
dp(Aq, Ap) is a definition ¢ operation

|L',(A2) ||£(A0) = T|£(A()) = <(21) ..>|[,(A0) = J_|
L(A)=T T T T
L(A1) = ((&)) T LA)UL(A) | £L(A)
L(A) =1 L L L

Fig. 6. Lattice computation for £(As) = Lus(L(A1),L(Ap)) where Ay =
up(Aq, Ap) is a use ¢ operation

[L£(A2) = L(A) 11 LA)]£(A0) = TIZ(Ao) = ((31), .-)[L£(Ad) = 1]
L(A) =T T L(Ao I
L(A1) = ((81),...) L(A1) | L£(A1) N L(Ao) L
L(A) =1 I T I

Fig. 7. Lattice computation for £(As) = L4(L(A1), L(Ag)) = L(A1) N L(Ap),
where Ay := ¢(A;, Ap) is a control ¢ operation

(a) Extended|(b) After index prop-|(c) Scalar replace-|(d) After

Partial Array SSA|agation: ment actions selected: |transforming

form: - - original program:

£Hg) = {} UseRepSet = {H o]}

P := new gypei [’(Halb) — {V(p)} DefRepSet: {Hf[p]}p I= new iypei

q := new Type - q := new Type

o L(Hz2) = {V(p)} R
tp] = ... L(H3) ={V(a)} A_tempv(m 1=
g[:]= do(H1, H) | L(HE) = {V(p), V(q) p.x = Atempy,
Slg) = ... LHE) = {V(p),V(q q.X = ...

Hi = do(H3, H3) (H3) = (VP V(a) .. = Atempy)

R (»)
... 1= Hi[p]
HE := up(Hi)

Fig.8. Trace of load elimination algorithm from figure 4 for program in
figure 2(a)

Unified Analysis of Array and Object References 165

Index propagation is a dataflow problem, which computes a lattice
value L£(H) for each heap variable H in the Array SSA form. This lattice value
L(H) is a set of value number vectors {i1,...}, such that a load of H[i] is
available (previously stored in a register) if V(i) € L(H). Figures 5, 6 and 7
give the lattice computations which define the index propagation solution. The
notation UPDATE(%’, (41, . ..)) used in the middle cell in figure 5 denotes a special
update of the list £(Ap) = (i1,...) with respect to index #’. UPDATE involves
four steps:

1. Compute the list T' = { i; | 3; € L(Ao) and DD(i’,4;) = true }. List T

contains only those indices from L£(Ag) that are definitely different from ’.

. Insert 4’ into T to obtain a new list, I.

3. If the size of list I exceeds the threshold size Z, then one of the indices in I
is dropped from the output list so as to satisfy the size constraint. (Since the
size of L(Ap) must have been < Z, it is sufficient to drop only one index to
satisfy the size constraint.)

4. Return I as the value of UPDATE(%’, (i1,...)).

[\V]

After index propagation, the algorithm selects an array use (load), A;[x], for
scalar replacement if and only if index propagation determines that an index
with value number V(z) is available at the def of A;. If so, the use is included
in UseRepSet , the set of uses selected for scalar replacement. Finally, an array
def, A;[k], is selected for scalar replacement if and only if some use A;[x] was
placed in UseRepSet such that V(z) = V(k). All such defs are included in
DefRepSet , the set of defs selected for scalar replacement.

Figure 8 illustrates a trace of this load elimination algorithm for the example
program in figure 2(a). Figure 8(a) shows the partial Array SSA form computed
for this example program. The results of index propagation are shown in
figure 8(b). These results depend on definitely-different analysis establishing that
V(p) # V(q) by using allocation site information as described in Section 2.2.
Figure 8(c) shows the scalar replacement actions derived from the results of
index propagation, and Figure 8(d) shows the transformed code after performing
these scalar replacement actions. The load of p.x has thus been eliminated in the
transformed code, and replaced by a use of the scalar temporary, A_tempv(p).

We now present a brief complexity analysis of the redundant load elimination
algorithm in Figure 4. Note that index propagation can be performed separately
for each heap array. Let k& be the maximum number of defs and uses for a single
heap array. Therefore, the number of d¢ and u¢ functions created for a single
heap array will be O(k). Based on past empirical measurements for scalar SSA
form [10], we can expect that the number of control ¢ functions for a single
heap array will also be O(k) in practice (since there are O(k) names created for
a heap array). Recall that the maximum size of a lattice value list, as well as
the maximum height of the lattice, is a compiler-defined constant, Z. Therefore,
the worst case execution-time complexity for index propagation of a single heap
array is O(k x Z?).

To complete the complexity analysis, we define a size metric for each method,
S = max(# instrs in method, k& x (# call instrs in method)). The first term (#

166 Stephen Fink et al.

instrs in method) usually dominates the max function in practice. Therefore, the
worst-case complexity for index propagation for all heap arrays is

> Ok x Z%) = O(S8 x Z?),
heap array A

since Y 4 ka must be O(S). Hence the execution time is a linear with a Z?2
factor. As mentioned earlier, the value of Z can be adjusted to trade off precision
and overhead. For the greatest precision, we can set Z = O(k), which yields
a worst-case O(S x k?) algorithm. In practice, k is usually small resulting in
linear execution time. This is the setting used to obtain the experimental results
reported in Section 4.

We conclude this section with a brief discussion of the impact of the
Java Memory Model (JMM). It has been observed that redundant load
elimination can be an illegal transformation for multithreaded programs written
for a memory model, such as the JMM, that includes the memory coherence
assumption [20]. (This observation does not apply to single-threaded programs.)
However, it is possible that the Java memory model will be revised in the future,
and that the new version will not require memory coherence [19]. However, if
necessary, our algorithms can be modified to obey memory coherence by simply
treating each u¢ function as a d¢ function i.e., by treating each array use as
an array def. Our implementation supports these semantics with a command-
line option. As in interesting side note, we observed that changing the data-flow
equations to support the strict memory model involved changing fewer than ten
lines of code.

3.2 Dead Store Elimination

In this section, we show how our Array SSA framework can be used to identify
redundant (dead) stores of array elements. Dead store elimination is related
to load elimination, because scalar replacement can convert non-redundant
stores into redundant stores. For example, consider the program in Figure 2(a).
If it contained an additional store of p.x at the bottom, the first store of
p-x will become redundant after scalar replacement. The program after scalar
replacement will then be similar to the program shown in Figure 2(c) as an
example of dead store elimination.

Our algorithm for dead store elimination is based on a backward propagation
of DEAD sets. As in load elimination, the propagation is sparse i.e., it goes
through ¢ nodes in the Array SSA form rather than basic blocks in a control
flow graph. However, u¢ functions are not used in dead store elimination, since
the ordering of uses is not relevant to identifying a dead store. Without u¢
functions, it is possible for multiple uses to access the same heap array name.
Hence, we use the notation (A, s) to refer to a specific use of heap array A in
statement s.

Unified Analysis of Array and Object References 167

Consider an augmenting def A;, a source or augmenting use (A4;,s), and a
source def Ay in Array SSA form. We define the following four sets:

DEADger(A;) = {V(z)|element x of array A is dead at augmenting def A;}
DEAD,s((Aj,s)) ={ V(z) | element z of array A is dead at source use of A;
in statement s}
KILL(Ay) = { V() | element z of array A is killed by source def of Ay}
LIVE(A;) = { V(z) | 3 a source use A;[x] of augmenting def A4; }

The KILL and LIVE sets are local sets; i.e., they can be computed
immediately without propagation of data flow information. If A; “escapes” from
the procedure (i.e., definition A; is exposed on procedure exit), then we must
conservatively set LIVE(A;) = U, the universal set of index value numbers
for array A. Note that in Java, every instruction that can potentially throw an
exception must be treated as a procedure exit, although this property can be

relaxed with some interprocedural analysis.

1. Propagation from the LHS to the RHS of a control ¢:

Consider an augmenting statement s of the form, Az := ¢(A1, Ag) involving a
control ¢.

In this case, the uses, (A1,s) and (Ao, s), must both come from augmenting
defs, and the propagation of DEADg.;(A2) to the RHS is a simple copy i.e.,
DEADuse«Al, S)) = DEADdEf (Az) and DEADuse(<A0, S>) = DEADdef (Az)

2. Propagation from the LHS to the RHS of a definition ¢:

Consider a d¢ statement s of the form As := d¢(A1, Ag). In this case use (A;,s)
must come from a source definition, and use (Ao, s) must come from an augmenting
definition. The propagation of DEADgey(A2) and KILL(A1) to DEADyse({Ao,s))
is given by the equation, DEADyse((Ao,s)) = KILL(A1) U DEADges(Az2).

3. Propagation to the LHS of a ¢ statement from uses in other statements:
Consider a definition or control ¢ statement of the form A; := ¢(...). The value
of DEADgycs(A;) is obtained by intersecting the DEAD,q. sets of all uses of Aj,
and subtracting out all value numbers that are not definitely different from every
element of LIVE(A;). This set is specified by the following equation:

DEADdef(Ai) = (DEADuée«AL,S))) — {’UB’LU S

s is a ¢ use of A;
LIVE(A;)s.t.~DD(v,w)}

Fig. 9. Data flow equations for DEADg.y and DEAD, . sets

The data flow equations used to compute the DEADg.¢ and DEAD,.
sets are given in Figure 9. The goal of our analysis is to find the maximal

168 Stephen Fink et al.

DEADgey and DEAD, . sets that satisfy these equations. Hence our algorithm
will initialize each DEADge; and DEAD, e set to = Uﬁld (for renamed arrays
derived from original array A), and then iterate on the equations till a fixpoint
is obtained. After DEAD sets have been computed, we can determine if
a source definition is redundant quite simply as follows. Consider a source
definition, A;[j] := ..., followed by a definition ¢ statement, A := d¢p(A1, Ao).
Then, if V(j) € DEAD(Az), then def (store) A; is redundant and can be
eliminated.

As in the index propagation analysis in Section 3.1, the worst-case execution-
time complexity for dead store elimination is O(S x k%), where S is the size of
the input method and k is an upper bound on the number of defs and uses for
a single heap array. In practice, k is usually small resulting in linear execution
time.

4 Experimental Results

We present an experimental evaluation of the scalar replacement algorithms
using the Jalapefio optimizing compiler [3]. The performance results in this
section were obtained on an IBM F50 Model 7025 system with four 166MHz
PPC604e processors running AIX v4.3. The system has 1GB of main memory.
Each processor has split 32KB first-level instruction and data caches and
a 256KB second-level cache.

The Jalapeno system is continually under development; the results in this
section use the Jalapeno system as of April 5, 2000. For these experiments, the
Jalapeno optimizing compiler performed a basic set of standard optimizations
including copy propagation, type propagation, null check elimination, constant
folding, devirtualization, local common subexpression elimination, load/store
elimination, dead code elimination, and linear scan register allocation. Previous
work [3] has demonstrated that Jalapenio performance with these optimizations
is roughly equivalent to that of the industry-leading IBM product JVM and JIT.
The runs use Jalapeno‘s non-generational copying garbage collector with 300MB
of heap (which is shared by the application and by all components of the
Jalapefio JVM).

Our preliminary implementation has several limitations. Our current im-
plementation does not eliminate the null-pointer and array-bounds checks for
redundant loads. We do not use any interprocedural summary information, as
the Jalapeno optimizing compiler assumes on “open-world” due to dynamic
class loading. We do not perform any loop-invariant code motion or partial
redundancy elimination to help eliminate redundant loads in loops. Most
importantly, the Jalapeno optimizing compiler still lacks many classical scalar
optimizations, which are especially important to eliminate the register copies
and reduce register pressure introduced by scalar replacement. For these reasons,
these experimental results should be considered a lower bound on the potential
gains due to scalar replacement, and we expect the results to improve as
Jalapeno matures.

Unified Analysis of Array and Object References 169

Note that since the entire Jalapeno JVM is implemented in Java, the
optimizing compiler compiles not only application code and library code, but
also VM code. The results in this section thus reflect the performance of the
entire body of Java code which runs an application, which includes VM code
and libraries. Furthermore, the compiler inlines code across these boundaries.

For our experiments, we use the seven codes from the SPECjvin98 suite [9],
and the Symantec suite of compiler microbenchmarks. For the SPEC codes, we
use the medium-size (-s10) inputs. Note that this methodology does not follow
the official SPEC run rules, and these results are not comparable with any official
SPEC results. The focus of our measurements was on obtaining dynamic counts
of memory operations. When we report timing information, we report the best
wall-clock time from three runs.

Program | getfield|putfield|getstatic| put- aload astore Total
static
compress |171158111|33762291| 4090184 377 39946890| 19386949||268344802
jess 17477337 372777| 109024| 27079 7910971 60241|| 25957429
db 2952234 166079 88134| 35360 2135244 428809 5805860
mpegaudio| 81362707|13571793| 18414632 3511|155893220| 25893308|(295139171
jack 9117580(2847032 226457|171130[1005661 860617 14228477
javac 5363477 1797152 188401| 3421 449841 223629|| 8025921
mtrt 26474627 4788579 53134 1927 8237230 800812(| 40356309
symantec | 28553709|15211818 41 0]303340062|123075060(|470180690

Table 1. Dynamic counts of memory operations, without scalar replacement.

We instrumented the compiled code to count each of the six types of
Java memory operations eligible for optimization by our scalar replacement al-
gorithms: getfield, putfield, getstatic, putstatic, aload and astore.
Table 1 shows the dynamic count of each operation during a sample run of each
program.

Program |getfield|putfield|getstatic|putstatic|aload|astore||Total
compress | 25.9% | 0.0% 0.0% 0.0% |0.0% | 0.0% |[16.5%
jess 1.0% 0.0% 0.0% 0.0% [0.0% | 0.0% || 0.7%
db 21.8% | 0.0% 0.0% 0.0% [0.0% | 0.0% |[11.1%
mpegaudio| 57.1% | 9.0% 0.0% 0.0% |20.3%| 10.6% ||27.8%
jack 15.2% | 0.9% 0.1% 0.0% [0.0% | 0.0% || 9.9%
javac 3.2% 0.0% 0.0% 0.0% [0.1% | 0.0% || 2.2%
mtrt 1.0% 0.0% 0.1% 0.0% [0.0% | 0.0% || 0.7%
symantec | 7.9% 3.8% 0.0% 0.0% |33.2%| 0.4% |[22.1%

Table 2. Percentage of (dynamic) memory operations eliminated.

170 Stephen Fink et al.

Table 2 shows the percentage of each type of memory operation eliminated by
our scalar replacement algorithms. The table shows that overall, the algorithms
eliminate between 0.7% and 27.8% of the loads and stores. The table shows that
redundant load elimination eliminates many more operations than dead store
elimination. On two codes, (mpegaudio and symantec), elimination of loads from
arrays play a significant role. On the others, the algorithm eliminates mostly
getfields. Interestingly, the algorithms are mostly ineffective at eliminating
references to static variables; however, table 1 shows that these references are
relatively infrequent.

Program Time Time Speedup
(no scalar replacement)|(scalar replacement)
compress 5.75 5.32 1.08
jess 1.80 1.80 1.00
db 1.98 1.97 1.00
mpegaudio 7.25 6.59 1.10
jack 8.13 8.12 1.00
javac 2.61 2.60 1.00
mtrt 3.07 3.05 1.00
symantec 16.22 15.46 1.05

Table 3. Speedup due to scalar replacement.

Table 3 shows the improvement in running time due to the scalar replacement
algorithm. The results show that the scalar replacement transformations give
speedups of at least 1.05x on each of the three codes where the optimizations
were most effective. Mpegaudio shows the greatest improvement with a speedup
of 1.1x.

We conclude this section with a brief discussion of the impact of scalar
replacement on register allocation. It has been observed in the past that
scalar replacement can increase register pressure [5]. For example, the scalar
replacement transformations shown in Figure 2(a) and Figure 2(b) eliminate
load instructions at the expense of introducing temporaries with long live ranges.
In our initial experiments, this extra register pressure resulted in performance
degradations for some cases. We addressed the problem by introducing heuristics
for live range splitting into our register allocator, which solved the problem.

5 Related Work

Past work on analysis and optimization of array and object references can
be classified into three categories — analysis of array references in scientific
programs written in languages with named arrays such as Fortran, analysis of
pointer references in weakly typed languages such as C, and analysis of object

Unified Analysis of Array and Object References 171

references in strongly typed languages such as Modula-3 and Java. Our research
builds on past work in the third category.

The analysis framework based on heap arrays reported in this paper can be
viewed as a flow-sensitive extension of type-based alias analysis as in [11]. Three
different versions of type-based alias analysis were reported in [11] — TypeDecl
(based on declared types of object references), FieldTypeDecl (based on type
declarations of fields) and SMTypeRefs (based on an inspection of assignment
statements in the entire program). All three versions are flow-insensitive. The
disambiguation provided by heap arrays in our approach is comparable to the
disambiguation provided by Field TypeDecl analysis. However, the use of value
numbering and Array SSA form in our approach results in flow-sensitive analyses
of array and object references that are more general than the three versions
of type-based alias analysis in [11]. For example, none of the three versions
would disambiguate references p.x and q.x in the example discussed earlier in
Figure 2(a).

In the remainder of this section, we briefly compare our approach with
relevant past work in the first two categories of analysis and optimization of
array and object references.

The first category is analysis and optimization of array references in scientific
programs. The early algorithms for scalar replacement (e.g., [4]) were based on
data dependence analysis and limited their attention to loops with restricted
control flow. More recent algorithms for scalar replacement (e.g., [5,2]) use
analyses based on PRE (partial redundancy elimination) as an extension to data
dependence analysis. However, all these past algorithms focused on accesses to
elements of named arrays, as in Fortran, and did not consider the possibility of
pointer-induced aliasing of arrays. Hence, these algorithms are not applicable to
programming languages (such as C and Java) where arrays might themselves be
aliased.

The second category is analysis and optimization of pointer references in
weakly typed languages such as C. Analysis of such programs is a major challenge
because the underlying language semantics forces the default assumptions to
be highly conservative. It is usually necessary to perform a complex points-to
analysis before pointer references can be classified as stack-directed or heap-
directed and any effective optimization can be performed [12]. To address this
challenge, there has been a large body of research on flow-sensitive pointer-
induced alias analysis in weakly typed languages e.g., [17,6,13,16,7]. However,
these algorithms are too complex for use in efficient analysis of strongly typed
languages, compared to the algorithms presented in this paper. Specifically, our
algorithms analyze object references in the same SSA framework that has been
used in the past for efficient scalar analysis. The fact that our approach uses
global value numbering in SSA form (rather than pointer tracking) to determine
if two pointers are the same or different leads to significant improvements in
time and space efficiency. The efficiency arises because SSA generates a single
value partition whereas pointer tracking leads to a different connection graph at
different program points.

172 Stephen Fink et al.

6 Conclusions and Future Work

In this paper, we presented a unified framework to analyze object-field and
array-element references for programs written in strongly-typed languages such
as Java and Modula-3. Our solution incorporates a novel approach for modeling
object references as heap arrays, and on the use of global value numbering and
allocation site information to determine if two object references are known to
be same or different. We presented new algorithms to identify fully redundant
loads and dead stores, based on sparse propagation in an extended Array SSA
form. Our preliminary experimental results show that the (dynamic) number of
memory operations arising from array-element and object-field accesses can be
reduced by up to 28%, resulting in execution time speedups of up to 1.1x.

In the near future, we plan to use our extended Array SSA compiler
infrastructure to extend other classical scalar analyses to deal with memory
accesses. An interesting direction for longer-term research is to extend SSA-
based value numbering (and the accompanying DS and DD analyses) to include
the effect of array/object memory operations by using the Array SSA analysis
framework. This extension will enable more precise analysis of nested object
references of the form a.b.c, or equivalently, indirect array references of the
form a[b[i]]. Eventually, our goal is to combine conditional constant and type
propagation, value numbering, PRE, and scalar replacement analyses with a
single framework that can analyze memory operations as effectively as scalar
operations.

Acknowledgments

We thank David Grove, Michael Hind, Harini Srinivasan, Mark Wegman and Bill
Thies for their comments and suggestions. Thanks also to the entire Jalapeno
team for their contribution to the infrastructure used for the experimental results
reported in this paper.

References

1. Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting Equality
of Variables in Programs. Fifteenth ACM Principles of Programming Languages
Symposium, pages 1-11, January 1988. San Diego, CA. 156, 160

2. R. Bodik and R. Gupta. Array Data-Flow Analysis for Load-Store Optimizations
in Superscalar Architectures. Lecture Notes in Computer Science, (1033):1-15,
1995. Proceedings of Eighth Annual Workshop on Languages and Compilers for
Parallel Computing, Columbus, Ohio, August 1995. 162, 171

3. Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind,
Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John
Whaley. The Jalapeno Dynamic Optimizing Compiler for Java. In ACM Java
Grande Conference, June 1999. 156, 168

10.

11.

12.

13.

14.

15.

16.

17.

18.

Unified Analysis of Array and Object References 173

David Callahan, Steve Carr, and Ken Kennedy. Improving Register Allocation
for Subscripted Variables. Proceedings of the ACM SIGPLAN 90 Conference
on Programming Language Design and Implementation, White Plains, New York,
pages 53-65, June 1990. 162, 171

Steve Carr and Ken Kennedy. Scalar Replacement in the Presence of Conditional
Control Flow. Software—Practice and Ezperience, (1):51-77, January 1994. 162,
170, 171

David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of Pointers and
Structures. Proceedings of the ACM SIGPLAN ’90 Conference on Programming
Language Design and Implementation, White Plains, New York, 25(6):296-310,
June 1990. 156, 171

Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive in-
terprocedural computation of pointer-induced aliases and side effects. In 20th
Annual ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages, pages 232—-245, January 1993. 156, 171

Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic Construction of
Sparse Data Flow Evaluation Graphs. Conference Record of the Eighteenth Annual
ACM Symposium on Principles of Programming Languages, January 1991. 158

. The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.

http://www.spec.org/osg/jvm98/, 1998. 169

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Transactions on Programming Languages and Systems,
13(4):451-490, October 1991. 158, 160, 165

Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias
analysis. In SIGPLAN ’98 Conference on Programming Language Design and
Implementation, pages 106-117, May 1998. 156, 157, 171

Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to work. In 25th
Annual ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages, pages 121-133, January 1998. 156, 171

Laurie J. Hendren, Joseph Hummel, and Alexandru Nicolau. Abstractions for
recursive pointer data structures: Improving the analysis of imperative programs.
Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language
Design and Implementation, pages 249-260, June 1992. 156, 171

Kathleen Knobe and Vivek Sarkar. Array SSA form and its use in Paralleliza-
tion. In 25th Annual ACM SIGACT-SIGPLAN Symposium on the Principles of
Programming Languages, January 1998. 155, 156, 157, 158

Kathleen Knobe and Vivek Sarkar. Conditional constant propagation of scalar
and array references using array SSA form. In Giorgio Levi, editor, Lecture Notes
in Computer Science, 1503, pages 33-56. Springer-Verlag, 1998. Proceedings from
the 5th International Static Analysis Symposium. 155, 156, 158

William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural side effect
analysis with pointer aliasing. Proceedings of the ACM SIGPLAN 98 Conference
on Programming Language Design and Implementation, pages 56-67, May 1993.
156, 171

J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses.
Proceedings of the ACM SIGPLAN ’88 Conference on Programming Language
Design and Implementation, 23(7):21-34, July 1988. 156, 171

Steven S. Muchnick. Advanced Compiler Design € Implementation. Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1997. 160

174 Stephen Fink et al.

19. William Pugh. A new memory model for Java. Note sent to the JavaMemoryModel
mailing list, http://www.cs.umd.edu/ pugh/java/memoryModel, October 22, 1999.
166

20. William Pugh. Fixing the Java Memory Model. In ACM Java Grande Conference,
June 1999. 166

21. Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global Value Num-
bers and Redundant Computations. Fifteenth ACM Principles of Programming
Languages Symposium, pages 12-27, January 1988. San Diego, CA. 160

22. Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, London
and The MIT Press, Cambridge, Massachusetts, 1989. In the series, Research
Monographs in Parallel and Distributed Computing. 156

	Unified Analysis of Array and Object References in Strongly Typed Languages
	Introduction
	Analysis Framework
	Heap Arrays
	Definitely-Same and Definitely-Di .erent Analyses for Heap Array Indices

	Scalar Replacement Algorithms
	Redundant Load El m nation
	Dead Store Elimination

	Experimental Results
	Related Work
	Conclusions and Future Work
	References

